Name:
Student ID \#:

Final

MAT-022A
You have 100 minutes. You may only use a pencil (or pen) and the scrap paper that I provide. No calculators, notes or books. You must show your work to receive full credit.

1. Let \mathbf{u} and \mathbf{v} be orthogonal vectors such that $\|\mathbf{u}\|=2$ and $\|\mathbf{v}\|=1$. Find $\|2 \mathbf{u}-3 \mathbf{v}\|$. (Your work must show your answer is true for any \mathbf{u} and \mathbf{v} that satisfy the above properties.) (10 points)
2. Find an orthonormal basis for the subspace of \mathbb{R}^{3} spanned by $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$. (10 points)
3. Let N be the set of all 3×3 nonsingular matrices with real entries. Prove or disprove that N is a real vector space under the operations of matrix addition and scalar multiplication. (10 points)
4. Let P_{n} denote the set of all polynomials of degree at most n with real coefficients (i.e. polynomials of the form $a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}$ for $\left.a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}\right)$ and let $S=\left\{t^{2}, 1+t, t^{3}+4\right\}$. (15 points)
a) Is the set S linearly independent in P_{3} ?
b) Is the set S a basis for P_{3} ?
c) What is $\operatorname{dim}\left(P_{n}\right)$? (no work necessary)
5. Let $A=\left[\begin{array}{llll}1 & 2 & 4 & 8 \\ 1 & 1 & 2 & 4\end{array}\right]$. (15 points)
a) Find a basis for the null space of A.
b) Find a basis for the row space of A.
c) Find a basis for the column space of A.
d) What is the nullity of A?
e) What is the rank of A?
6. If $\operatorname{nullity}(A)=2$ for some 6×8 matrix A, what is the rank of A ? (5 points)
7. $S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}-2 & 0 \\ 0 & 0\end{array}\right]\right\}$ and $T=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ are ordered bases for the set of all 2×2 diagonal matrices with real entries). Find the transition matrix $P_{S \leftarrow T}$ from the T-basis to the S-basis. (10 points)
8. Let $P_{S \leftarrow T}=\left[\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right]$ be a transition matrix from some ordered basis T to another ordered basis S of the same vector space. Find $P_{T \leftarrow S}$, the transition matrix from the S-basis to the T-basis. (10 points)
9. Let $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$. Find an orthogonal matrix Q such that $Q^{T} A Q=\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. points)

Extra Credit 1: Prove that for an $n \times n$ matrix A, the matrix transformation $f(\mathbf{x})=A \mathbf{x}$ is both one-to-one (i.e. $f(\mathbf{x})=f(\mathbf{x}) \Leftrightarrow \mathbf{x}=\mathbf{y}$) and onto (i.e. for each \mathbf{y} in \mathbb{C}^{n} there is an \mathbf{x} in \mathbb{C}^{n} such that $f(\mathbf{x})=\mathbf{y}$) if and only if A is nonsingular. (10 points, test score can't exceed 100 points)

Extra Credit 2: Let A be a 3×3 matrix that rotates vectors $\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \epsilon \mathbb{R}^{3}$ around the x-axis by 45 degrees.
Find a basis for the subspace of \mathbb{R}^{3} spanned by the eigenvectors of A. (Hint: You don't need to find A. Just ask yourself, "What is special about eigenvectors?") (10 points, test score can't exceed 100 points)

