MAT 22A : Linear algebra

December 13, 2013

1. (a) Compute the projection of the vector $\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 0\end{array}\right)$ to the linear subspace $X=\left\{x \in \mathbb{R}^{4} \mid x_{1}=x_{2}\right.$ and $\left.x_{3}+x_{4}=0\right\}$.
(b) Over a flat and long drive, a driver manages to link his car's gas mileage to his average speed. In particular he collects 4 data given as follows

Trip Number	1	2	3	4
Average speed (mph)	60	64	62	60
Gas mileage (mpg)	50	47	49	51

Find the best linear relation that links the gas mileage to the average speed.
Hint : To simplify the computation, try to fit the relation $(m p g-50)=C+D(m p h-60)$.

MAT 22A : Linear algebra

December 13, 2013
2. Consider the matrix $A=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \\ 2 & 2 & 0\end{array}\right)$.
(a) Prove that the columns of A are linearly independent.
(b) Compute an orthogonal basis of $C(A)$, the column space of A
(c) Compute a vector that is in the orthogonal complement of $C(A)$.

MAT 22A : Linear algebra

December 13, 2013
3. Let $A=\left(\begin{array}{ccc}\frac{1}{2} & \frac{1}{4} & -\frac{1}{2} \\ 1 & -\frac{1}{2} & 1 \\ \frac{1}{2} & -\frac{3}{4} & \frac{3}{2}\end{array}\right)$.
(a) Prove that the rank of A is 2 .
(b) Prove that $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ is an eigenvector of A.
(c) Compute all eigenvalues and eigenvectors of A.
(d) Compute A^{200} with 5 significant digits.

Student id :

MAT 22A : Linear algebra

December 13, 2013
4. Give a short answer and a justification to the following questions. The justifcation is more important than a correct answer.
(a) What is the determinant of $\left(\begin{array}{llll}1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2\end{array}\right)$?
(b) True or false? A matrix is diagonalizable if and only if, for every eigenvalue, the geometric multiplicity is less than or equal to the algebraic multiplicity.
(c) Given n pairs $\left(a_{i}, b_{i}\right), i=1, \ldots, n$, explain how to fit a relation of the type $b \approx C a^{D}$ using linear least-squares.
(d) True or false? If A has eigenvalues $1,2,3$ then A^{-1} has eigenvalues $1, \frac{1}{2}, \frac{1}{3}$.
(e) True or false? $\left\{\left(\begin{array}{lll}1 & 0 & 0\end{array}\right),\left(\begin{array}{lll}0 & 1 & 0\end{array}\right),\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)\right\}$ is an orthonormal basis for the row space of $\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 3 \\ 0 & -1 & 1\end{array}\right)$.
(f) True or false? If Q is an orthogonal matrix, then Q^{T} is an orthogonal matrix too.

