MATHEMATICS 22B, SECTION 2 THE FINAL EXAMINATION, DECEMBER 9, 2015

Instructions: Work all problems in your bluebook. Only the bluebook will be collected.

Notation: \mathbb{R} = field of real numbers, ODE=ordinary differential equation, $i = \sqrt{-1}$, the constant e is the unique positive real number satisfying $\int_1^e \frac{dt}{t} = 1$; that is, the natural logarithm of e equals 1.

#1. (10 pts) Consider the matrix ODE

$$M\frac{d^2u}{dt^2} + Au = 0\tag{1}$$

where $u \in \mathbb{R}^N$, M is a $N \times N$ diagonal matrix with positive entries, and A is a $N \times N$ real symmetric matrix with positive eigenvalues. Both M and A are independent of t. If we assume a solution of the form

$$u(t) = e^{i \omega t} f$$

where $f \in \mathbb{R}^N$, $f \neq 0$, is independent of t, show that ω^2 must satisfy the equation

$$\det\left(A - \omega^2 M\right) = 0.$$

Figure 1: Figure for question #2. Amplitude as a function of driving frequency ω .

#2. (10 pts) A simple (classical) harmonic oscillator (i.e. a mass-spring system), initially at rest, is subjected to an external driving force $F(t) = \cos \omega t$. The resulting amplitude of oscillation of the oscillator, as a function of the driving frequency ω , is displayed in Figure 1. Assuming that the frictional forces are very small; and hence negligible, on the basis of this graph estimate the period of the oscillator. Give a reason for your answer.

#3. (20 pts) The two-dimensional Laplace equation in polar coordinates $(x = r\cos\theta \text{ and } y = r\sin\theta)$ is

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0.$$
 (2)

Assume a solution of the form (separation of variables)

$$u(r,\theta) = R(r)\Theta(\theta).$$

- 1. Find ODEs for R(r) and $\Theta(\theta)$.
- 2. Solve the Θ ODE. (You are not asked to solve the R ODE.)
- 3. What can you say about the separation constant, i.e. does it have to take on special values; and if so, why?

#4. (20 pts) Consider the nonlinear, coupled ODEs for the unknowns $f_1(x)$, $f_2(x)$ and $f_3(x)$, $x \in \mathbb{R}$:

$$\frac{df_1}{dx} = f_2(x) f_3(x),
\frac{df_2}{dx} = -f_1(x) f_3(x),
\frac{df_3}{dx} = -k^2 f_1(x) f_2(x),$$

with initial conditions $f_1(0) = 0$, $f_2(0) = 1$, $f_3(0) = 1$ and k is a constant, $0 \le k \le 1$. Show that

$$f_1(x)^2 + f_2(x)^2 = 1$$
 and $k^2 f_1(x)^2 + f_3(x)^2 = 1$

for all x.

#5. (20 pts) Consider the 2nd order (scalar) ODE

$$\frac{d^2y}{dx^2} - xy = 0, \quad -\infty < x < \infty. \tag{3}$$

Note that this is *not* a constant coefficient ODE.

1. We assume a power series solution of (3) of the form

$$y(x) = y_0 + y_1 x + y_2 x^2 + y_3 x^3 + \dots = \sum_{n=0}^{\infty} y_n x^n$$
 (4)

where the coefficients y_n are to be determined. Substitute (4) into (3) and show that

$$y_2 = 0 (5)$$

and

$$(n+2)(n+1)y_{n+2} - y_{n-1} = 0$$
 for $n = 1, 2, 3, \dots$ (6)

Show that it follows from (5) and (6) that

$$0 = y_2 = y_5 = y_8 = y_{11} = \dots = y_{3n+2} = \dots$$

2.

$$y_{3n} = y_0 \prod_{j=0}^{n-1} \frac{1}{(3j+3)(3j+2)}, \quad n = 1, 2, 3, \dots$$

3.

$$y_{3n+1} = y_1 \prod_{j=0}^{n-1} \frac{1}{(3j+4)(3j+3)}, \quad n = 1, 2, 3, \dots$$

#6. (20 pts) In this problem you may assume as given

1.

$$\int_{-\infty}^{\infty} e^{-ax^2 + 2bx} dx = \sqrt{\frac{\pi}{a}} e^{b^2/a}, \ a > 0.$$

2. If f(x) is continuous and rapidly decreasing at infinity, the Fourier transform of f is

$$\widehat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x\xi} dx$$

and the inverse Fourier transform is

$$f(x) = \int_{-\infty}^{\infty} \widehat{f}(\xi) e^{2\pi i x \xi} d\xi.$$

Consider now the one-dimensional heat equation on the line $(-\infty < x < \infty)$

$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = 0$$

with initial condition

$$u(x,0) = f(x), -\infty < x < \infty.$$

Show that the solution u(x,t) is given by

$$u(x,t) = \int_{-\infty}^{\infty} K(x,y;t)f(y) dy$$

where

$$K(x, y; t) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)^2}{4t}}.$$

END OF EXAM