Name: _____

Final

Wait! Do not turn this page until told to.

No books, notes, phones, or calculators.

Show all of your work.

Justify every statement that you make.

Good luck!

1	2	3	4	5	

for office use

1. Two days after a person is infected with the flu virus, he/she transmits it to six others every day.

Starting with one person, infected on day zero, let f_n be the number of people having flu on day n. Thus $f_0 = 1$, $f_1 = 1$, $f_2 = 7$.

(a) Write a recurrence formula for this sequence, and find f_4 .

(b) Find f_n in terms of n.

2. (a) Prove that if 81 numbers are chosen from the set $\{1, \ldots, 100\}$, then there are always five consecutive numbers.

(b) Show that this claim is not true if 80 numbers are chosen.

- 3. You are given a white fence with 8n posts, and four cans of paint: red, green, blue and yellow.
 - (a) In how many ways can you paint the fence, such that 2n posts are red, 2n are green, 2n are blue, and 2n are yellow?

(b) In how many ways can you paint n posts with each color, and leave 4n posts unpainted?

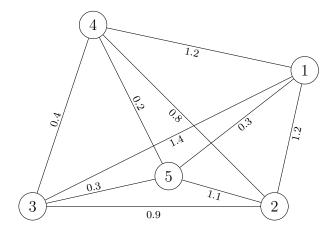
(c) Use Stirling's formula to compare the two cases as $n \to \infty$.

4. Consider the complete graph K₅ with labeled vertices {1, 2, 3, 4, 5}.In this question you don't have to justify your answers.

(a) Is K_5 connected? _____

(b) Is K_5 Eulerian? _____

(c) How many Hamilton cycles does K_5 have? _____


(d) How many perfect matchings does K_5 have? _____

(e) How many spanning trees does K_5 have? _____

(f) Find a minimum spanning tree in the following weighted K_5 .

What's its total weight? _____

Write its Prüfer code: _____

- 5. (a) Let T be a tree. Prove the following claims.
 - 1. Adding an edge $e \notin T$, to T, creates a cycle $C \subseteq T \cup \{e\}$.

2. Removing an edge $e' \in C$, from $T \cup \{e\}$, yields a tree $T' = T \cup \{e\} \setminus \{e'\}$.

(b) Let T be a minimum spanning tree in a weighted graph (V, E, w).

Suppose that $e \notin T$ and let e' be an edge on the unique path in T that connects the endpoints of e. Show that $w(e') \leq w(e)$.