Name: \qquad

Final

Wait! Do not turn this page until told to.

No books, notes, phones, or calculators.

Show all of your work.

Justify every statement that you make.

Good luck!

1	2	3	4	5	

for office use

1. Two days after a person is infected with the flu virus, he/she transmits it to six others every day.
Starting with one person, infected on day zero, let f_{n} be the number of people having flu on day n. Thus $f_{0}=1, f_{1}=1, f_{2}=7$.
(a) Write a recurrence formula for this sequence, and find f_{4}.
(b) Find f_{n} in terms of n.
2. (a) Prove that if 81 numbers are chosen from the set $\{1, \ldots, 100\}$, then there are always five consecutive numbers.
(b) Show that this claim is not true if 80 numbers are chosen.
3. You are given a white fence with $8 n$ posts, and four cans of paint: red, green, blue and yellow.
(a) In how many ways can you paint the fence, such that $2 n$ posts are red, $2 n$ are green, $2 n$ are blue, and $2 n$ are yellow?
(b) In how many ways can you paint n posts with each color, and leave $4 n$ posts unpainted?
(c) Use Stirling's formula to compare the two cases as $n \rightarrow \infty$.
4. Consider the complete graph K_{5} with labeled vertices $\{1,2,3,4,5\}$. In this question you don't have to justify your answers.
(a) Is K_{5} connected? \qquad
(b) Is K_{5} Eulerian? \qquad
(c) How many Hamilton cycles does K_{5} have? \qquad
(d) How many perfect matchings does K_{5} have? \qquad
(e) How many spanning trees does K_{5} have? \qquad
(f) Find a minimum spanning tree in the following weighted K_{5}.

What's its total weight? \qquad
Write its Prüfer code: \qquad

5. (a) Let T be a tree. Prove the following claims.

1. Adding an edge $e \notin T$, to T, creates a cycle $C \subseteq T \cup\{e\}$.
2. Removing an edge $e^{\prime} \in C$, from $T \cup\{e\}$, yields a tree $T^{\prime}=T \cup\{e\} \backslash\left\{e^{\prime}\right\}$.
(b) Let T be a minimum spanning tree in a weighted graph (V, E, w).

Suppose that $e \notin T$ and let e^{\prime} be an edge on the unique path in T that connects the endpoints of e. Show that $w\left(e^{\prime}\right) \leq w(e)$.

