Math 280: Random Knotting

Instructor: Javier Arsuaga (jarsuaga@math.ucdavis.edu)

Random knotting is the mathematical theory that provides a rigorous explanation to the formation of knots and links in physical systems. In this course we will review theoretical and computational results and present open questions for lattice and off-lattice models. Applications to physical systems, in particular to DNA and other polymers, will also be discussed.

Topics

Basic concepts in knot theory, probability, real analysis and complexity of algorithms.
Random knotting and linking in the simple cubic lattice Z³: entropic and free energy models

- i) Knotting and linking of random polygons in Z^3 .
- ii) Knotting and linking of random polygons in confined geometries of Z^3 .
- iii) The writhe of random polygons in Z³

iii) Knotting and linking of random polygons in Z³ with free-energy: the collapsed polymer model

- iv) Overview of models, results and open problems
- 3.- Minicircle models
 - i) Linking of minicircles
 - ii) Percolation in minicircle systems
 - iii) Description of minicircle systems: mean valence,
 - percolation and average saturation densities
- 4.- Random knotting and linking in off-lattice models
 - i) Density functions for off-lattice models: Equilateral random polygons (ERPs)
 - ii) The knotting probability of ERP in R³
 - iii) The average crossing number of an ERP in R³ and in confined geometries
 - iv) The Uniform random polygon (URPs): linking in confinement
 - v) Linking of mini and maxicircles

The course will be based on the discussion of published papers and a final project. Attendance and participation will be part of the final grade.