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Introduction - Overview

I Ramsey Theory is the mathematical study of combinatorial
objects in which a certain degree of order must occur as the
scale of the object becomes large.

I In particular, Rado’s theorem.

I Solving the problem in a different way, and through
computers.

I In this project, we are concerned with linear homogeneous
equations with 3 variables. For example, ax + by = cz , where
a, b, c ∈ Z.
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Introduction - Definitions with example

Let me introduce the idea of coloring and monochromatic
solution to an linear equation D with an example:

Example

We can define a 2−colorings of the integer from 1 to 6 as by
splitting them into 2 sets. For example, 1, 3, 5, 2, 4, 6.
If we are concerned about equation x + y = z where solutions are
within the bounds [1, 6], then we can see that 2 + 4 = 6 is a
monochromatic solution.
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Introduction - Definitions cont’d

Definition (Rado Number)

For any equation D, the Rado Number Rr (D) is the smallest N
such that any r−coloring χ : {1, 2, . . . ,N} → {1, 2, . . . , r} must
induce a monochromatic solution to D.

Example

The 2-color Rado Number for equation x + y = z is 5. Since we
can color the first 4 integers 1, 4, 2, 3, but 5 would be an issue.

Example

We can avoid monochromatic solutions to equation x + y = z if
we 3−color 1− 13 in the following way:

{2, 3, 7, 12}{5, 6, 8, 9}{1, 4, 10, 11, 13}

In fact, 3−coloring Rado Number for x + y = z is 14.
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Our Project

I There has been work on Rado numbers using computational
methods before.

I We are extending the computations, with optimizations, and
computing a lot of new Rado numbers that had not been
known before.

I Let computers do the heavy lifting for us.
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Computations

I We are solving the Rado Number problem with Boolean
algebra.

I In particularly, we are translating the Rado Number problems
into propositional logic satisfiability problem(SAT). Then, use
SAT-solvers to solve them.

I The high-level idea of encoding the problem is very similar of
M.Heule’s Schur Number Five Paper.

I Let me introduce some basic Boolean algebra terminology.
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Encoding notations

I Let R r
n(D) denote the encoding of a r−coloring of the

integers from 1 to n which avoids monochromatic solutions to
the equation D.

I If R r
n(D) is satisfiable, then we can avoid monochromatic

solutions with this coloring and Rr (D) > n. If it’s
unsatisfiable, then Rr (D) ≤ n.

I For encoding of R r
n(D), we use Boolean variable v ij , which

indicates that number j has color i .

I The encoding is split into three sections, positive, negative
and optional clauses.

I The positive clauses encode that every number j must have at
least one color.

I The negative clauses encode that every solution to the
equation D, the variables in D cannot have the same color.

I The optional clauses encode that every number has at most
one color.
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Encoding Example

I Let D be x + y = z , we want to encode R3
4 (D).

I Positive clauses:
(v11 ∨ v21 ∨ v31 )∧ (v12 ∨ v22 ∨ v32 )∧ (v13 ∨ v23 ∨ v33 )∧ (v14 ∨ v24 ∨ v34 )

I Negative clauses:
(v11 ∨ v11 ∨ v12) ∧ (v12 ∨ v11 ∨ v13) ∧ (v13 ∨ v11 ∨ v14) ∧ (v11 ∨ v12 ∨
v13) ∧ (v12 ∨ v12 ∨ v14) ∧ (v11 ∨ v13 ∨ v14) ∧
(v21 ∨ v21 ∨ v22) ∧ (v22 ∨ v21 ∨ v23) ∧ (v23 ∨ v21 ∨ v24) ∧ (v21 ∨ v22 ∨
v23) ∧ (v22 ∨ v22 ∨ v24) ∧ (v21 ∨ v23 ∨ v24) ∧
(v31 ∨ v31 ∨ v32) ∧ (v32 ∨ v31 ∨ v33) ∧ (v33 ∨ v31 ∨ v34) ∧ (v31 ∨ v32 ∨
v33) ∧ (v32 ∨ v32 ∨ v34) ∧ (v31 ∨ v33 ∨ v34)
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(v13∨v23)∧(v13∨v33)∧(v23∨v33)∧(v14∨v24)∧(v14∨v34)∧(v24∨v34)
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Optimizations

When solving each instance, there are 3 main parts within the
algorithm that take up the majority of the time.

I SAT generation(Generate solutions)

I Writing clauses to file

I Solve the SAT problem.

There are methods which we can speed up each of the 3 parts.

I Faster software implementation (Maple → C → Python)

I Smarter solution generation (Hermite Normal Form).

I Hardware optimization (loop unrolling).

I Symmetry breaking (Asymmetric branching).

I Multi-threaded SAT solvers (Glucose).
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Future work

I Probabilistic solution generation.

I Smarter and heavier symmetry breaking technique.

I Pipeline style SAT solving, avoid secondary storage.

I Implementation in a logical programming language such as
Prolog.

I 4−colorings.
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to Professor Jesús De Loera for nominating me to this
summer program.



Acknowledgment

I would like to thank again:

I William Wesley, who guided me throughout the project,
helped me with all the necessary background knowledge.

I Professor Jesús De Loera, whose expertise helped push the
project forward, also the countless insightful comments
throughout the summer.

I I am grateful for the financial support provided NSF grant
1818969 to Prof. Jesus De Loera. The National Science
Foundation’s Summer Scholars Internship Program provided
me with this opportunity and funding for this project. Thanks
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Thank you!

Thank you very much everyone for your time!


