One-dimensional range-restricted C^{2} interpolation algorithm

Chen Liang, Yutong Liang Mentor: Kevin Luli, Black Jiang

University of California, Davis
October 12, 2021

A Problem...

Given n points in the $\mathrm{x}-\mathrm{y}$ plane, how can we pass a graph through them with second derivatives "as small as possible"?

And what if we require the graph to be above the x-axis or between two horizontal lines?

Three-points-interpolation

$$
\begin{equation*}
f_{1}=(x-2)^{2}+2 \tag{1}
\end{equation*}
$$

Figure: use quadratic function to minimize the second derivative

Patching

$$
\begin{gather*}
f_{1}=(x-2)^{2}+2 \tag{2}\\
f_{2}=-(x-3)^{2}+3 \tag{3}\\
g(x)=\theta(x) f_{1}(x)+(1-\theta(x)) f_{2}(x) \tag{4}
\end{gather*}
$$

When $\theta(x)$ is linear

Figure: linear

When $\theta(x)$ is cubic

Figure: cubic

When $\theta(x)$ is quintic

Figure: quintic

When $\theta(x)$ is a bump function

$$
\theta(x)= \begin{cases}e \times \exp \left(-\frac{1}{1-x^{2}}\right) & x \in(-1,1) \tag{5}\\ 0 & \text { otherwise }\end{cases}
$$

Figure: bump function

Interpolation without lower bound

Figure: We cannot guarantee that quadratic is non-negative

One-jet interpolation

One-jet is the tangent line at that point.

Figure: One-jet interpolation

Three points interpolation with lower bound

Figure: Three points interpolation that satisfies the lower bound condition

Finding optimal slopes

Whitney norm

$$
\begin{align*}
& \sum_{j=1,2,3} \sum_{m=0,1}\left|\frac{d^{m}}{d x^{m}} p_{j}\left(x_{j}\right)\right|+\sum_{\substack{i, j=1,2,3 \\
i \neq j}} \sum_{m=0,1} \frac{\left|\frac{d^{m}}{d x^{m}}\left(p_{i}-p_{j}\right)\left(x_{i}\right)\right|}{\left|x_{i}-x_{j}\right|^{2-m}} \\
= & \sum_{j=1,2,3}\left(\left|b_{j}\right|+\left|k_{j}\right|\right)+\sum_{\substack{i, j=1,2,3 \\
i \neq j}}\left(\left|b_{i}-b_{j}+k_{j} \delta_{i j}\right| \delta_{i j}^{-2}+\left|k_{i}-k_{j}\right| \delta_{i j}\right) \tag{6}
\end{align*}
$$

where

$$
p_{j}(x)=k_{j}\left(x-x_{j}\right)+b_{j}
$$

and

$$
\delta_{i j}=\left|x_{i}-x_{j}\right|
$$

Optimization problem

$$
\begin{array}{r}
L_{S}=\left[\begin{array}{cccccc}
\delta_{21}^{-2} & 0 & -\delta_{21}^{-2} & \delta_{21}^{-1} & 0 & 0 \\
0 & 0 & \delta_{32}^{-2} & 0 & -\delta_{32}^{-2} & \delta_{32}^{-1} \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & \delta_{21}^{-1} & 0 & -\delta_{21}^{-1} & 0 & 0 \\
0 & 0 & 0 & \delta_{32}^{-1} & 0 & -\delta_{32}^{-1} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
\beta=L_{S}\left(\begin{array}{c}
b_{1} \\
k_{1} \\
b_{2} \\
k_{2} \\
b_{3} \\
k_{3}
\end{array}\right) \tag{8}
\end{array}
$$

Optimization problem

$$
\begin{equation*}
L_{\varphi}=\operatorname{diag}\left(0, \frac{1}{2 \sqrt{y_{1}}}, 0, \frac{1}{2 \sqrt{y_{2}}}, 0, \frac{1}{2 \sqrt{y_{3}}}\right) \tag{9}
\end{equation*}
$$

The problem becomes minimizing

$$
\begin{equation*}
\left\|L_{\varphi} \beta\right\|_{\ell_{2}}^{2}+\|\beta\|_{\ell_{1}} \tag{10}
\end{equation*}
$$

subject to

$$
\operatorname{diag}(1,0,1,0,1,0) L_{S}^{-1} \beta=\left(\begin{array}{c}
y_{1} \tag{11}\\
0 \\
y_{2} \\
0 \\
y_{3} \\
0
\end{array}\right)
$$

Karush-Kuhn-Tucker (KKT) method

Optimize $f(\vec{x})$ subject to

$$
\begin{equation*}
g_{i}(\vec{x}) \geq 0, h_{j}(\vec{x})=0 . \tag{12}
\end{equation*}
$$

Figure: Visualization of KKT method (Source: Wikipedia, image by Onmyphd at http://www.onmyphd.com/?p=kkt.karush.kuhn.tucker)

Two boundaries

Figure: The one jet interpolation with two boundaries (before patching)

Two boundaries

Figure: The one jet interpolation with two boundaries

Demo and questions

