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K-Means Algorithm

K-Means is a clustering algorithm that tries to find the centroids of
clusters using an iterative method that eventually converges to actual
centroid of the clusters.

The K-Means algorithm is the following:

1 Randomly choose the centers of the k clusters that lies in the domain
of the set of points.

2 Assign each point in the set to a cluster, depending on how close it is
to one of the randomly chosen centers.

3 For each of the k clusters, calculate the new center.

4 Repeat step 2 and 3 until convergence is met.
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K-Means

We would like to formalize this problem as an optimization problem:

Consider a set of points S = {(x i1, x i2, . . . , x in) : i ∈ {0, 1, . . . , n}}. Then we
would like to divide S into clusters of (S1, . . . ,Sk) each with centers at
(c1, c2, . . . ck). Then we wish to minimize the function

f (S ,S) =
k∑

j=1

|Sj |∑
i=1

∣∣∣∣s ji − cj
∣∣∣∣2

which describes the total sum of squared Euclidean distances from each
point xi to its centroid ci
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K-Means

A different way to model the problem would be to let

X = [xij ] ∈ Rn×k

Such that

xij =

{
1 if si is in cluster Sj

0 if if si is not in cluster Sj
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K-Means

In this case, the cluster centroids can be rewritten as

cj =

∑n
l=1 xljsl∑n
l=1 xlj

and the MSSC (minimum sum of squared Euclidean distance) is
represented as the following optimization problem:

1 min
∑k

j=1

∑n
i=1 xij

∣∣∣∣si − ∑n
l=1 xlj sl∑n
l=1 xlj

∣∣∣∣2
2 s.t.

∑k
j=1 xij = 1 for (i = 1, ..., n).

3
∑n

i=1 xij ≥ 1 for (j = 1, ..., k).

4 xij ∈ 0, 1(i = 1, ..., n; j = 1, ..., k)
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Problems with K-Means

The issue that arises when trying to solve K-Means is that the algorithm
that has been mentioned is NP-Hard, or in other words, inefficient to solve.
Therefore, it is more viable to use approximations of the classical K-Means
algorithm which are more efficient, and can be solved in polynomial time.
One such solution is by approximating the K-Means problem as a
semidefinite programming problem (SDP), which can be solved efficiently.
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SDP

A standard SDP problem is of the following form
min Tr(WZ )

s.t. Tr(BiZ ) = bi for i = 1, . . . , k

Z < 0

(1)
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0-1 SDP

Alternatively, a 0-1 SDP problem has slightly different constraints and
takes the following form

min Tr(WZ )

s.t. Tr(BiZ ) = bi for i = 1, . . . , k

Z 2 = Z ,Z = ZT

(2)

meaning that Z is a symmetric matrix and its elements can only be 0 and 1
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Equivalence of Classical K-Means to SDP

Recall the objective function given previously

f (S ,S) =
k∑

j=1

n∑
i=1

xij
∣∣∣∣si − ∑n

l=1 xljsl∑n
l=1 xlj

∣∣∣∣2
Then we expand this term and yield

f (S , S) =
n∑

i=1

||si ||2
k∑

j=1

xij −
k∑

j=1

||
∑n

i=1 xijsi ||2∑n
i=1 xij

Let WS be a matrix that denotes a matrix with the ith row being sTi . So,
we have that the matrix WSW

T
S gives us the norms of each point si in

each of the diagonal entries, so the trace of this matrix yields the norm of
the point. Hence, we have

f (S , S) = Tr(WSW
T
s )−

k∑
j=1

||
∑n

i=1 xijsi ||2∑n
i=1 xij
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Equivalence of Classical K-Means to SDP

Since X is an assignment matrix, we have that the rows depict which
points belong to which cluster, so every row contains only one 1. On the
other hand, for each column there is at least 1 since the columns can be
thought of clusters. It follows that since X has elements that are either 0
or 1,

XTX = diag

( n∑
i=1

x2i1, . . . ,
n∑

i=1

x2ik

)
= diag

( n∑
i=1

xi1, . . . ,
n∑

i=1

xik

)
.

Now, let
Z = [zij ] = X (XTX )−1XT

then we have that

f (S ,S) = Tr(WSW
T
s )−

k∑
j=1

||
∑n

i=1 xijsi ||2∑n
i=1 xij

= Tr(WSW
T
s )− Tr(WSW

T
s Z )

= Tr(WSW
T
s (I − Z ))
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Equivalence of Classical K-Means to SDP

Recall that there is a constraint in our original optimization problem:

k∑
j=1

xij = 1

We can reformulate this by writing that

Xek = en

where ek is the vector with only 1’s (same with en). It follows

Zen = ZXek = X (XTX )−1XTXek = Xek = en.

So, we have a constraint given by Ze = e.
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Equivalence of Classical K-Means to SDP

It can be shown that in Z the term∑n
i=1 x

2
ij∑n

i=1 xij

appears in each of the diagonal entries. So,

Tr(Z ) =
k∑

j=1

∑n
i=1 x

2
ij∑n

i=1 xij

=
k∑

j=1

1

= k

Denise Cerna and Tejes Srivastava (UCD) K-Means Clustering October 12, 2021 12 / 28



Equivalence of Classical K-Means to SDP

Finally, we are left with the following 0-1 SDP problem to solve:
min Tr(W (I − Z ))

s.t. Ze = e,Tr(Z ) = k

Z ≥ 0,Z 2 = Z ,Z = ZT

(3)
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Reformulating K-Means to Manifold Optimization

Let us consider another relaxation of the K -Means problem given by{
min Tr(DYY T ) + λ||Y−||2F
s.t. Y ∈ M

(4)

We let
M = {Y ∈ Rn×k : Y TY = Ik ,YY

T1 = 1}.

Y− denotes a matrix from the manifold M which only contains the
negative entries and all the positive entries are simply set to 0. Note that
||Y−||F denotes the Frobenius norm.

Denise Cerna and Tejes Srivastava (UCD) K-Means Clustering October 12, 2021 14 / 28



Solving K-Means Manifold Optimization

The following is the algorithm to solve the relaxation of K -Means in (4)

1 Set λ0 → 0

2 Yn+1 ← Gradient Descent(fλ) Initialized at Yn

3 λn+1 ← 2λn + 1

4 Repeat steps 2-3 until ||Y−||F < ε
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Issues for Manifold Optimization

The above algorithm may seem simplistic and easy to implement, implying
that the given problem is ideal for solving. However, note that this solves a
relaxation of the problem, without a way to generalize back to the original
K -Means problem. Moreover, the above algorithm was not provided an
assured guarantee to converge because Gradient Descent will not
necessarily remain in M.
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Alternating Direction Method of Multipliers (ADMM)

This is a particular class of problems that are well studied in convex
optimization.

minimize f (x) + g(z)

subject to Ax + Bz = C

We define the Langrangian to be the following function:

Lρ(x , z , y) = f (x) + g(z) + yT (Ax + Bz − C ) +
ρ

2
||Ax + Bz − C ||22
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Alternating Direction Method of Multipliers (ADMM)

The algorithm proposed to solve ADMM Problems is of the following form:

xk+1 = argminxLρ(x , zk , yk)

zk+1 = argminxLρ(xk+1, zk , yk)

yk+1 = yk + ρ(Axk+1 + Bzk+1 − C )
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ADMM Manifold Optimization

In order to address these aforementioned problems with manifold
optimization, we formulate a new relaxation using ADMM.

minimize
1

2
Tr(DXXT ) + I+(Y )

subject to X = Y ,Y ∈ M

where M = {Y ∈ Rx×k : Y TY = Ik ,YY
T1 = 1}. I+ is the positive

indicator function, given by

I+(Y ) =

{
∞, if Y contains any negative values

0, else
(5)
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Algorithm to solve ADMM Manifold Optimization

The algorithm used to solve this problem is given by

X k+1 = RetrXk
(−ηkProjT

XkM(2DX + Λk + ρ(X k − Z k)) (6)

Y k+1 = max
{
X k+1 +

1

ρ
Λk , 0

}
(7)

Z k+1 =
1

1 + 1
γ + ρ

(
1

γ
Y k+1 + Λk + ρX k+1

)
(8)

Λk+1 = Λk + ρ(X k+1 − Z k+1) (9)
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Numerical Experiments

First we ran the original gradient descent algorithm using a synthetic data
set of 80 points and 4 clusters:

Minimization of aTr(DYY T ) + b
∣∣∣∣Y ∣∣∣∣2
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Numerical Experiments

Next, we considered the ADMM Algorithm for different data sets.

Stochastic Balls: 80 points, 4 planted clusters
NMI = 1.0
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Numerical Experiments

Soybean Small-Data: 46 points, 4 clusters
NMI = 0.718
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Numerical Experiments

Wine Data: 178 points, 3 clusters
The NMI values from left to right are 0.461, 0.365, 0.011
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Conclusions

Challenges when testing different parameter values

Block structure appears despite low NMI scores

Parameters leading to singular matrices

Results varied upon initialization

Larger data was more unstable
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Applictions to Future Work

Identifying a more objective way to compare similar results

Exploring new initialization methods

Determining a proper terminal condition ofr the algorithm

Considering a relaxation for the indicator function
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Thank You! Any Questions?

https://github.com/tejess/manifold-optimization
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