185A Final Examination

Thursday March 23, 2023
Name \qquad Student ID \qquad Signature

Question 1: Define the principal $\operatorname{logarithm} \log (z)$ (hint, start by writing z in polar form). Explain how to use your definition to define the principal part of the power function z^{c} where $c \in \mathbb{C}$. Use your definition to compute (the principal value of) i^{i}.

Question 2: Draw a regular pentagon in the complex plane with unit length sides and one side given by the line segment between $z=0$ and $z=1$.

Factor the polynomial

$$
1+z+z^{2}+z^{3}+z^{4}
$$

over \mathbb{C}. Hint: use your pentagon for inspiration (you might want to compute the five complex numbers given by the differences of adjacent vertices).

Extra space for question 2:

Question 3: State the Cauchy-Riemann relations. Now consider the function

$$
f(z)=x^{3}+3 i x^{2} y-3 x y^{2}+i y^{3} .
$$

Is $f(z)$ analytic?

Extra space for question 3:

Question 4: Let $1<R \in \mathbb{R}$. Sketch the parameterized curves $C_{1}=\left\{R e^{i t}: t \in[0, \pi]\right\}$ and $C_{2}=\{R t: t \in[-1,1]\}$.

Now consider the closed, simple, positively oriented contour $C=C_{1}+C_{2}$. Use Cauchy's integral formula to compute the integral

$$
\oint_{C} \frac{d z}{z^{2}+1} .
$$

Hint: remember that polynomials can always be factored over \mathbb{C}.

Compute the limit

$$
\lim _{R \rightarrow \infty} \frac{R}{R^{2}-1}
$$

Use the parameterization given to show

$$
\left|\int_{C_{1}} \frac{d z}{z^{2}+1}\right| \leq \frac{\pi R}{R^{2}-1}
$$

Hint: you may need the reverse triangle inequality and may use any integral inequality proved in class.

Orchestrate your previous three calculations to compute the integral

$$
\int_{-\infty}^{\infty} \frac{d x}{x^{2}+1}
$$

Extra space for question 4:

Question 5: State both Green's Theorem and the Cauchy-Goursat Theorem. Now assume that C is a closed, simple, positively oriented contour. Does the Cauchy-Goursat theorem imply that the integral

$$
A:=\frac{1}{2 i} \oint_{C} \bar{z} d z
$$

is zero? If not, why? Now use Green's Theorem to show that A equals the area inside the contour C.

Extra space for question 5:

Question 6: Suppose that the function $f(z)$ is analytic in a neighborhood of $z=0$ and moreover

$$
|f(z)| \leq|f(0)|
$$

for all z in that neighborhood. Show that $|f(z)|$ is a constant function in a neighborhood of $z=0$. Hint: start by considering a closed, simple, positively oriented contour contained in a suitable neighborhood of the origin and then use Cauchy's integral formula.

Extra space for question 6:

