TOPOLOGY PRELIM EXAM: SPRING 2023

(1) Let X be the union of the unit sphere S^{2} with two intersecting diameters connecting $(1,0,0)$ with $(-1,0,0)$ and $(0,1,0)$ with $(0,-1,0)$ respectively.

(a) Find a cell decomposition of X. How many cells are there?
(b) Compute $\pi_{1}(X)$.
(2) Let $S^{3}=\left\{\left(z_{1}, z_{2}\right):\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}$ be the unit sphere in $\mathbb{C}^{2}=\mathbb{R}^{4}$. Consider the map

$$
g: S^{3} \rightarrow S^{3}, g\left(z_{1}, z_{2}\right)=\left(i z_{1},-i z_{2}\right)
$$

(a) Prove that $g^{4}=$ Id and g generates a free action of \mathbb{Z}_{4} on S^{4}.
(b) Compute $\pi_{1}\left(S^{3} / \mathbb{Z}_{4}\right)$.
(3) Find the degree of the map $f: S^{1} \rightarrow S^{1}$ given by

$$
f(x, y)=\left(y^{2}-x^{2}, 2 x y\right)
$$

(4) Let $A=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=z^{2}\right\}$ and let $B=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$.
(a) Prove that A and B intersect transversally in \mathbb{R}^{3}.
(b) Prove that the intersection $A \cap B$ is a manifold, and state its dimension.
(5) Let $X=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{2}+y^{3}-z^{2}+w^{3}=1\right\}$.
(a) Prove that X is a manifold and state its dimension.
(b) Calculate (describe mathematically) the tangent spaces of X at a point $(x, y, z, w) \in X$.
(c) Show that $\left((x, y, z, w),\left\langle 3 y^{2},-2 x, 3 w^{2}, 2 z\right\rangle\right)$ is a vector field on X.
(6) Let $\eta=y d x \wedge d y+x d y \wedge d z$ be a 2-form on \mathbb{R}^{3}. Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}^{3}$ be the map from the unit square defined by $f(s, t)=\left(s+t, s-t, s^{2}+t^{2}\right)$. Calculate $\int_{[0,1] \times[0,1]} f^{*} \eta$.

