TOPOLOGY PRELIM EXAM: SPRING 2023

(1) Let X be the union of the unit sphere S^2 with two intersecting diameters connecting (1,0,0) with (-1,0,0) and (0,1,0) with (0,-1,0) respectively.

- (a) Find a cell decomposition of X. How many cells are there?
- (b) Compute $\pi_1(X)$.
- (2) Let $S^3 = \{(z_1, z_2) : |z_1|^2 + |z_2|^2 = 1\}$ be the unit sphere in $\mathbb{C}^2 = \mathbb{R}^4$. Consider the map $g: S^3 \to S^3, \ g(z_1, z_2) = (iz_1, -iz_2).$
 - (a) Prove that $g^4 = \text{Id}$ and g generates a free action of \mathbb{Z}_4 on S^4 .
 - (b) Compute $\pi_1(S^3/\mathbb{Z}_4)$.
- (3) Find the degree of the map $f: S^1 \to S^1$ given by

$$f(x,y) = (y^2 - x^2, 2xy).$$

- (4) Let $A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2\}$ and let $B = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}.$
 - (a) Prove that A and B intersect transversally in \mathbb{R}^3 .
 - (b) Prove that the intersection $A \cap B$ is a manifold, and state its dimension.
- (5) Let $X = \{(x, y, z, w) \in \mathbb{R}^4 \mid x^2 + y^3 z^2 + w^3 = 1\}.$
 - (a) Prove that X is a manifold and state its dimension.
 - (b) Calculate (describe mathematically) the tangent spaces of X at a point $(x, y, z, w) \in X$.
 - (c) Show that $((x, y, z, w), \langle 3y^2, -2x, 3w^2, 2z \rangle)$ is a vector field on X.
- (6) Let $\eta = ydx \wedge dy + xdy \wedge dz$ be a 2-form on \mathbb{R}^3 . Let $f : [0,1] \times [0,1] \to \mathbb{R}^3$ be the map from the unit square defined by $f(s,t) = (s+t, s-t, s^2+t^2)$. Calculate $\int_{[0,1] \times [0,1]} f^* \eta$.