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(1) Let X = {(x, y) ∈ R2 | x2 + y2 = 1}. For c ∈ R, let Yc = {(x, y) ∈ R2 | x− y = c}.

(a) Give formulas for the tangent spaces T(x,y)X for (x, y) ∈ X and T(x,y)Yc for (x, y) ∈ Yc.

(b) Determine and prove for which values of c ∈ R does X intersect Yc transversally in R2?

(2) Suppose X and Y are smooth, connected, oriented manifolds (no boundary), and dim(X) = dim(Y ).
Let f : X → Y be a smooth map.

(a) Assume X is compact. Suppose there is a point y0 ∈ Y such that f−1(y0) = {x0} and
dfx0

: Tx0
X → Ty0

Y is an isomorphism of vector spaces. Prove that f is surjective.

(b) Give an example of a map f : R → R, such that there exists a point y ∈ R with a single point x
in its preimage (f−1(y) = {x}), but such that f is not surjective. (Verify it satisfies the claimed
properties.)

(3) Consider the torus T 2 ⊂ R3 given by

T 2 = {((cos θ + 2) cosϕ, (cos θ + 2) sinϕ, sin θ) | (θ, ϕ) ∈ [0, 2π)× [0, 2π)}.
Let i : T 2 → R3 denote the inclusion map. Let ω be the 2-form on R3 given by

ω = x dx ∧ dy + (y + y2) dy ∧ dz + (z + z2) dx ∧ dz

Prove that ∫
T 2

i∗ω = 0.

(4) Covering space examples:

(a) Let W be the wedge of two circles. Draw two connected 2-fold covering spaces of W that are
not homeomorphic.

(b) Let F be a closed orientable surface of genus 5. Show that any two connected 2-fold covering
spaces of F are homeomorphic.

(5) Let X be the topological space obtained from R3 by removing the x-axis and the y-axis. Compute
the fundamental group of X.

(6) Let X = RP 2 × RP 2.

(a) Compute π1(RP 2) and π1(X). (Justify your computations.)

(b) What is the universal cover X̃ ofX? How does π1(X) acts as a group of covering transformations

on X̃? (Specify what are the covering (deck) transformations that each generator of π1(X) is
sent to.)


