ANALYSIS PRELIM EXAM

- (1) Let f be a continuous function on [0,1]. Assume $\int_0^1 x^n f(x) dx = 0$ for all $n \in \mathbb{N}_0 = \{0, 1, 2, 3, ...\}$. Prove f is identically zero on [0,1].
- (2) Let $(X, ||\cdot||)$ be a Banach space. Suppose $x_n \in X$ is a sequence such that $||x_n|| \leq 1$.
 - (a) If $x_n \to x$ in the norm topology, prove that $||x|| \le 1$.
 - (b) If $x_n \rightharpoonup x$ weakly in X, prove that $||x|| \le 1$.
- (3) Let X = C([0,1]) endowed with the uniform norm, $|| \cdot ||_{\infty}$, and let Y = C([0,1]) endowed with the norm $||f||_1 := \int_0^1 |f(x)| dx$. Define the operators $Tf(x) = \frac{1}{x} \int_0^x f(t) dt$ and $If(x) = \int_0^x f(t) dt$. Prove
 - (a) $I: X \to X$ is compact.
 - (b) $T: Y \to X$ is **not** bounded.
- (4) Let \mathcal{H} be an infinite dimensional separable Hilbert space.
 - (a) Write a definition of an orthonormal basis.
 - (b) Show that any orthonormal basis is countable.
 - (c) Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal basis. Show that for every $x \in \mathcal{H}$

$$||x||^2 = \sum_{n=1}^{\infty} |\langle e_n, x \rangle|^2.$$

The last statement is called the Parseval's equality. (For full credit we expect a proof starting from the definition you wrote in part 4a.)

- (5) An operator L on a Hilbert space is called nilpotent if there exists $n \in \mathbb{N}$ such that $L^n = 0$ and quasi-nilpotent if the spectrum of L contains only zero, $\sigma(L) = \{0\}$.
 - (a) Show that every nilpotent operator is quasi-nilpotent,
 - (b) Show that if L is Hermitian and quasi-nilpotent then L = 0,
 - (c) Let $L: l^2(\mathbb{N}) \to l^2(\mathbb{N})$ be defined by $(Lx)_k = 2^{-(k+1)}x_{k+1}$. Prove that L is quasi-nilpotent, but not nilpotent.
- (6) Let

$$c_n = \frac{1}{\sqrt{2\pi}} \int_0^\pi e^{-inx} dx,$$

and define

$$f(x) = \frac{1}{\sqrt{2\pi}} \sum_{n = -\infty}^{\infty} c_n e^{inx}.$$

- (a) Find the values f(1) and f(0).
- (b) Does $f \in L^2[(-\pi, \pi)]$? If yes, compute the norm.
- (c) Does $f \in C([-\pi, \pi])$? If yes, compute the norm.

Date: March 25, 2024.