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(1) LetX,Y, Z be Banach spaces. Let B(X,Y ) be the Banach space of bounded linear operators mapping
X → Y equipped with the standard operator norm. Likewise, B(Y,Z) is the space of bounded linear
operators Y → Z. Let T ∈ B(X,Y ) and S ∈ B(Y,Z).

(a) Prove that T is continuous (this means that if xn → x in X, then Txn → Tx in Y ).

(b) Prove that ∥ST∥ ≤ ∥S∥∥T∥.

Note: You must start with the definition of a bounded linear operator to receive full credit, you
cannot simply state that both (a) and (b) are known lemmas.

(2) Consider the space, ℓ∞0 (N), of sequences x : N → R that have zero limit, i.e. ℓ∞0 (N) = {x :
limn→∞ xn = 0}. Equip this space with the norm ∥x∥ = supn |xn|. Define operators S, T : ℓ∞0 (N) →
ℓ∞0 (N) by

(Tx)n :=
xn

n
, (Sx)n :=

n− 1

n
xn.

(a) Compute the operator norm ∥T∥.

(b) Prove that T is a compact operator.

(c) Prove that S is NOT a compact operator.

(3) Define the vector space X = {f : [0, 1] 7→ R : f continuous, f(0) = 0}. Let 0 < α < 1. Define the
norms

∥f∥ := sup
0≤x≤1

|f(x)|, ∥f∥α := sup
x̸=y

|f(x)− f(y)|
|x− y|α

.

Consider the Banach spaces C0([0, 1]) = (X, ∥ · ∥) and Cα
0 ([0, 1])] = (X, ∥ · ∥α).

(a) For any 0 < α < 1, prove that Bα := {f ∈ X : ∥f∥α ≤ 1} is precompact in C0([0, 1]).

(b) Let 0 < α < β < 1. Prove that there exists a constant C < ∞ such that for all f ∈ X, the
interpolation inequality,

∥f∥α ≤ C∥f∥
α
β

β ∥f∥1−
α
β ,

holds.

(c) Let 0 < α < β < 1. Prove that Bβ is precompact in Cα
0 ([0, 1]). Hint: use parts (a) and (b).

(4) Let H be an infinite dimensional separable Hilbert space and {en}∞n=1 an orthonormal basis. Show
that the map S : H → l2(N),

x 7→ (Sx)n = ⟨en, x⟩ ,
is an isometry. This means that you need to show that S is a bijection and that ∥Sx∥ = ∥x∥ holds
for all x ∈ H.

(5) Let T be a compact Hermitian operator on a Hilbert space. Assume that

e2πiT = Id.

(a) Show that σ(T ) ⊂ Z,

(b) Show that T is a finite rank operator.

Note: For any z ∈ C, ezT is defined via functional calculus or by the series

ezT =

∞∑
n=0

(zT )n

n!
.

(6) Write the Fourier series of the function f : [0, 2π) → R,
f(x) = x.

Does the series converge pointwise? If yes, what is the limit? Does the series converge in the topology
of L2([0, 2π))?


