ALGEBRA PRELIM EXAM

- (1) A group has sixty elements including at least two of order five which do not commute. How many of the elements have order five?
- (2) Take $\alpha = 2^{\frac{1}{3}} + 3^{\frac{1}{2}} \in \mathbb{R}$.
 - (a) Show that $\mathbb{Q}(\alpha) = \mathbb{Q}(2^{\frac{1}{3}}, 3^{\frac{1}{2}})$
 - (b) Find $\dim_K H$ if K is the subfield of \mathbb{R} generated by α and $H \supseteq K$ is a splitting field for α .
- (3) For how many values of $a \in \mathbb{F}_q$ is the ring $\mathbb{F}_q[x]/(x^3 a)$ another field if:
 - (a) q = 11
 - (b) q = 13
- (4) Let $S = \mathbb{R}\langle x, y \rangle$ (this is the noncommutative polynomial ring, also equal to the tensor algebra $T(\mathbb{R}^2)$).
 - Let $M = \mathbb{R}[x]$ be the S-module defined via
 - x acts as left multiplication by x
 - y acts as $\frac{d}{dx}$.

Prove M is a simple S-module.

(5) Let R and S be commutative rings, let $\varphi : R \to S$ be a ring homomorphism.

For the following statements, if true prove it; if false give a counter-example.

- (a) If $Q \subseteq S$ is a prime ideal, then the ideal $\varphi^{-1}(Q)$ is a prime ideal of R.
- (b) If $J \subseteq S$ is an ideal and $\varphi^{-1}(J)$ is a prime ideal of R, then J is a prime ideal of S.
- (c) If φ is surjective, if $I \subseteq R$ is an ideal, and if $\varphi(I)$ is a prime ideal of S, then I is a prime ideal of R.
- (6) Give an example of a ring R and a left R-module M such that M is a projective R-module but not a free R-module.

Date: September 20, 2023.