Problem 1. Recall the definition of the Gaussian distribution with variance $\sigma^2 > 0$:

$$p_{\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right), \ x \in \mathbb{R}.$$

For $f \in L^1(\mathbb{R}) \cap C_0(\mathbb{R})$, define

$$(Tf)(x) = \sqrt{2} \int_{-\infty}^{+\infty} p_{1/2}(y)f(\sqrt{2}(x - y)) \, dy.$$

a) Prove that p_1 is a fixed point of T.

b) Prove that for all $c > 0$, there is exactly one fixed point of T in $L^1(\mathbb{R}) \cap C_0(\mathbb{R})$, say f, such that $\|f\|_{L^1} = c$.

c) Let $g \in L^1(\mathbb{R}) \cap C_0(\mathbb{R})$ be a non-negative function. Show that the sequence $T^n g$ converges in $L^1(\mathbb{R})$ as $n \to \infty$, and find its limit.

Problem 2. Let $(t_n)_{n \geq 1}$ be a sequence of non-negative real numbers such that $\sum_{n \geq 1} t_n^{3/2} = 1$. Let (a_n) be a sequence of complex numbers satisfying

$$\sum_{n \geq 1} |a_n|^3 < +\infty. \quad (1)$$

Define $f_n \in C([0, 1])$, by

$$f_n(x) = \sum_{m=1}^{n} t_m a_m \sin(m\pi x)$$

Prove that the set

$$A = \{f_n \mid n \geq 1\}$$

is precompact in $C([0, 1])$ with the supremum norm.
Problem 3.
a) Let X^{-1} be the distributional limit, as $\epsilon \to 0$, of the sequence of functions
\[
F_\epsilon(x) = \begin{cases}
\frac{1}{x}, & |x| > \epsilon \\
0, & |x| < \epsilon
\end{cases}
\]
Show that X^{-1} is the distributional derivative of the function $f(x) = \log |x|$.
b) Show that the distributional limit, as $\epsilon \to 0$, of the following sequence
\[
f_\epsilon(x) = \frac{1}{x - i\epsilon}, \quad \epsilon > 0
\]
is $X^{-1} + \pi i \delta$.

Problem 4. Let $h > 0$, and consider the following differential-difference initial-value problem, where $u(x,t)$ and $f(x)$ are 2π-periodic functions of x:
\[
\begin{align*}
&u_t(x,t) = u(x+h,t) - 2u(x,t) + u(x-h,t), \\
&u(x,0) = f(x).
\end{align*}
\]
a) (10 points) Use Fourier series to solve for $u(x,t)$ when $f(x)$ is square-integrable.
b) (5 points) How does the smoothness of $u(\cdot, t)$ for $t > 0$ compare with the smoothness of $f(\cdot)$?
c) (5 points) Discuss briefly what happens to your solution in the limit $h \to 0$.

Problem 5.
a) (5 points) Define “orthogonal projection on a Hilbert space”.
b) (10 points) Suppose that P and Q are orthogonal projections with ranges \mathcal{M} and \mathcal{N}, respectively. If $PQ = QP$, prove that $R = P + Q - PQ$ is an orthogonal projection. What is its range?

Problem 6.
a) (5 points) Define strong and weak convergence in a Hilbert space.
b) (5 points) Suppose that $(x_n)_{n=1}^\infty$ is an orthogonal sequence in a Hilbert space, meaning that x_n is orthogonal to x_m for $n \neq m$. Prove that the following statements are equivalent:
\[
\begin{align*}
&\text{(i) } \sum_{n=1}^\infty x_n \text{ converges strongly;} \\
&\text{(ii) } \sum_{n=1}^\infty x_n \text{ converges weakly;}
\end{align*}
\]
(iii) \(\sum_{n=1}^{\infty} \|x_n\|^2 < \infty. \)

c) (5 points) Give an example to show that if the sequence \((x_n)_{n=1}^{\infty} \) is not orthogonal, then \(\sum_{n=1}^{\infty} x_n \) may converge weakly but not strongly.

Problem 7. Consider the system

\[
\begin{align*}
\dot{q} &= 4p^3 - 4pq \\
\dot{p} &= 2p^2 - 3q^2
\end{align*}
\]

a) Show that the function \(H(q, p) = p^4 - 2p^2q + q^3 \) is a conserved quantity for this system.

b) Compute the linearization of the system at the fixed point

\((q^*, p^*) = \left(\frac{2}{3}, \sqrt{\frac{2}{3}} \right) \)

What type of fixed point is this? Sketch the behavior of the full system in a small neighborhood of the fixed point.

Problem 8. Consider the one-dimensional system

\[
\dot{x} = x + \frac{rx}{1 + x^2}
\]

a) Compute the location of all fixed points as a function of \(r \in \mathbb{R} \).

b) Plot the phase portrait when \(r = -2 \).

c) Plot a bifurcation diagram for the system. At what values of \(x \) and \(r \) does the bifurcation occur? What type of bifurcation is it?

d) Describe what would happen to the system’s solution if it starts at \(x = 1/2 \) and \(r = -2 \), and then \(r \) is very slowly increased? Assume that the system dynamics are much faster than the change in \(r \).