Fall 2001 Mathematics Graduate Program Masters Exam

Instructions: Explain your answers clearly. Unclear answers will not receive credit. State results and theorems that you are using.

1. Algebra

Problem 1. a. Prove Lagrange’s theorem: If G is a finite group and H is a subgroup then $|H|$ divides $|G|$.
Prove or disprove: If n divides $|G|$ then there is a subgroup of G of order n.

Problem 2. a. Give an example of a group and a subgroup which is not normal.
b. Show that a group G of order 33 has a subgroup H of order 11.
c. Show that this subgroup H is normal.

Problem 3. a. Give an example of a noncommutative ring.
b. Let $\mathbb{Z}[x]$ denote the ring of polynomials with integer coefficients. Prove or disprove: $\mathbb{Z}[x]$ is a Principle Ideal Domain.

Problem 4. a. Give three examples of Field extensions of the rationals \mathbb{Q}.
b. Let $\mathbb{Q}(a)$ denote the field extension of the rationals obtained by adjoining a. Show that the field $\mathbb{Q}(\sqrt{2})$ is not isomorphic to $\mathbb{Q}(\sqrt{3})$.

Problem 5. a. Give an example of a finite field of order 3 and a finite field of order 9.
b. Give an example of an infinite field of characteristic 3.
c. Let F be a finite field. Show that the order of F is equal to p^n for some prime number p and positive integer n.

2. Analysis

Problem 6. Let $f : R \to R$ be a differentiable mapping with
$$\lim_{x \to \infty} f(x) = 0.$$
a. Show that there exists a sequence $x_n \to \infty$ with
$$\lim_{n \to \infty} f'(x_n) = 0.$$

b. Show that it is not necessarily true that $f'(x)$ is bounded.

Problem 7. Let $f : [0, 1] \to [0, 1]$ be a continuous function. Show that $f(x) = x$ for some x.
Is the same true for a continuous function $f : (0, 1) \to (0, 1)$ on the open unit interval? Prove or give a counterexample.

Problem 8. Suppose $\lim_{n \to \infty} p_n = p_0$. Show that the set $E = \{p_0, p_1, p_2, \ldots\}$ is compact.

Problem 9. Prove that $C[0,1]$, the space of continuous functions on $[0,1]$, is not complete in the L^1 metric:
$$\rho(f, g) = \int |f(x) - g(x)| \, dx$$
Problem 10. Consider the map \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) given by

\[
T_1(x_1, x_2, x_3) = y_1 = x_1 \cos x_2 \\
T_2(x_1, x_2, x_3) = y_2 = x_1 \sin x_2 \\
T_3(x_1, x_2, x_3) = y_3 = x_3
\]

a. Compute the Jacobian matrix of \(T \).
b. For which values of \(x = (x_1, x_2, x_3) \) is the map locally invertible (i.e. there exists a neighborhood \(U \) of \(x \) and a neighborhood \(V \) of \(y = T(x) \) such that \(T : U \to V \) is 1-1 and onto with inverse map \(T^{-1} : V \to U \)).
c. Compute the Jacobian matrix of \(T^{-1} \) at \(f(x) \) where it exists.

3. Linear Algebra and Other Areas

Problem 11. a. Give an example of a real \(n \times n \) matrix none of whose eigenvalues are real numbers.
b. Show that there is no such example which is \(3 \times 3 \).
c. Show that every eigenvalue of a symmetric real matrix is real.

Problem 12. a. Give three examples of linear mappings \(L : \mathbb{R}^3 \to \mathbb{R}^3 \) satisfying \(L^2 = L \).
Let \(P : \mathbb{R}^n \to \mathbb{R}^n \) be a linear mapping satisfying \(P^2 = P \).
a. Show that every vector in \(\mathbb{R}^n \) can be written as a sum of two vectors, one in the kernel of \(P \) and one in the image of \(P \).
b. If \(P \) is symmetric (self-adjoint) then show that the image of \(P \) and the kernel of \(P \) are orthogonal subspaces of \(\mathbb{R}^n \).