Please read first: (i) To get full credit show all your work. (ii) No outside help or internet searches. (iii) You can use your class notes and book. (iv) You have until 10:15 am to upload the test

Name:

1 (20 points) A variant of the secant method defines two sequences u_{k} and v_{k} such that $f\left(u_{k}\right)$ has one sign and $f\left(v_{k}\right)$ has the opposite sign. From these sequences and the secant method one can derive the expression

$$
\begin{equation*}
w_{k}=\frac{u_{k} f\left(v_{k}\right)-v_{k} f\left(u_{k}\right)}{f\left(v_{k}\right)-f\left(u_{k}\right)}, k=1,2,3, \ldots \tag{1}
\end{equation*}
$$

We define $u_{k+1}=w_{k}$ and $v_{k+1}=v_{k}$ if $f\left(w_{k}\right) f\left(u_{k}\right)>0$ and $u_{k+1}=u_{k}$ and $v_{k+1}=w_{k}$ otherwise. Suppose that $f^{\prime \prime}$ is continuous on the interval $\left[u_{0}, v_{0}\right]$ and that for some $\mathrm{K}, f^{\prime \prime}$ has a constant sign in $\left[u_{K}, v_{K}\right]$. Explain why either $u_{k}=u_{K}$ for all $k \geq K$ or $v_{k}=v_{K}$ for all $k \geq K$. Deduce that the methods converges linearly.
2. (30 points) Suppose m linear systems $A x(p)=b(p), p=1,2, \ldots, m$, are to be solved, each with the $n \times n$ coefficient matrix A.

1. Construct an algorithm using Gaussian elimination with backward substitution ,
2. Show that the required multiplications/divisions are $\frac{1}{3} n^{3}+m n^{2}-\frac{1}{3} n$
3. Show that the required additions/subtractions are $\frac{1}{3} n^{3}+m n^{2}-\frac{1}{2} n^{2}-m n+\frac{1}{6} n$.
4. (40 points) The Frobenius norm of a square matrix is defined as $\|A\|_{F}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j}^{2}\right)^{\frac{1}{2}}$
5. (10 points) Show that the Frobenius norm is a matrix norm
6. (10 points) Show that if A is a symmetric matrix, then $\|A\|_{F}^{2}=\operatorname{trace}\left(A^{2}\right)$, where the trace is the sum of the elements in the diagonal.
7. (10 points) Show that $\|A\|_{2} \leq\|A\|_{F} \leq n^{\frac{1}{2}}\|A\|_{2}$
8. (10 points) Show that $\|A x\|_{2} \leq\|A\|_{F}\|x\|_{2}$
9. (10 points) Show that if B is singular $(\operatorname{det}(B)=0)$, then $\frac{1}{K(A)} \leq \frac{\|A-B\|}{\|A\|}$
[Hint: There is a vector with $\|x\|=1$, such that $B x=0$. Derive the estimate using $\|A x\| \geq \frac{\|x\|}{\left\|A^{-1}\right\|}$.
