Fall 2011: MA Algebra Preliminary Exam

Instructions:

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
2. Use separate sheets for the solution of each problem.

Problem 1:

Show that there is no commutative ring with the identity whose additive group is isomorphic to \mathbb{Q} / \mathbb{Z}.

Problem 2:

Let $p \neq 2$ be prime and F_{p} be the field of p elements.
(a) How many elements of F_{p} have square roots in F_{p} ?
(b) How many have cube roots in F_{p} ?

Problem 3:

Prove that every finite group is isomorphic to a certain group of permutations (a subgroup of S_{n} for some n).

Problem 4:

Let G be the subgroup of S_{12} generated by $a=(123456)(7891011$ 12) and $b=(17410)(21259)(31168)$. Find the order of G, the number of conjugacy classes of G, and the character table of G.

Problem 5:
Prove or disprove: If the group G of order 55 acts on a set X of 39 elements then there is a fixed point.

Problem 6:

Prove or disprove: $(\mathbb{Z} / 35 \mathbb{Z})^{*} \cong(\mathbb{Z} / 39 \mathbb{Z})^{*} \cong(\mathbb{Z} / 45 \mathbb{Z})^{*} \cong(\mathbb{Z} / 70 \mathbb{Z})^{*} \cong(\mathbb{Z} / 78 \mathbb{Z})^{*} \cong$ $(\mathbb{Z} / 90 \mathbb{Z})^{*}$. Here $(\mathbb{Z} / n \mathbb{Z})^{*}$ is the group of units in $\mathbb{Z} / n \mathbb{Z}$.

