Fall 2011: MA Algebra Preliminary Exam

Instructions:

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1:

Show that there is no commutative ring with the identity whose additive group is isomorphic to \mathbb{Q}/\mathbb{Z} .

Problem 2:

Let $p \neq 2$ be prime and F_p be the field of p elements. (a) How many elements of F_p have square roots in F_p ? (b) How many have cube roots in F_p ?

Problem 3:

Prove that every finite group is isomorphic to a certain group of permutations (a subgroup of S_n for some n).

Problem 4:

Let G be the subgroup of S_{12} generated by $a = (1 \ 2 \ 3 \ 4 \ 5 \ 6)(7 \ 8 \ 9 \ 10 \ 11 \ 12)$ and $b = (1 \ 7 \ 4 \ 10)(2 \ 12 \ 5 \ 9)(3 \ 11 \ 6 \ 8)$. Find the order of G, the number of conjugacy classes of G, and the character table of G.

Problem 5:

Prove or disprove: If the group G of order 55 acts on a set X of 39 elements then there is a fixed point.

Problem 6:

Prove or disprove: $(\mathbb{Z}/35\mathbb{Z})^* \cong (\mathbb{Z}/39\mathbb{Z})^* \cong (\mathbb{Z}/45\mathbb{Z})^* \cong (\mathbb{Z}/70\mathbb{Z})^* \cong (\mathbb{Z}/78\mathbb{Z})^* \cong (\mathbb{Z}/90\mathbb{Z})^*$. Here $(\mathbb{Z}/n\mathbb{Z})^*$ is the group of units in $\mathbb{Z}/n\mathbb{Z}$.