Preliminary Exam in Algebra Spring, 2016

Instructions:

- (1) All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- (2) Use separate sheets for the solution of each problem.

Problem 1. Let \mathbf{k} be a field and let $R = Mat_{n,n}(\mathbf{k})$ be the ring of $n \times n$ matrices with entries from \mathbf{k} . Let $f : R \to S$ be any ring homomorphism. Show that f is either injective or zero.

Problem 2. Let R be a ring with the identity, consisting of p^2 elements. Show that R is commutative.

Problem 3. Let G be a group generated by elements a, b each of which has order 2. Prove that G contains a subgroup of index 2.

Problem 4. Prove that every finite group G of order > 2 has a nontrivial automorphism.

Problem 5. Find all possible Jordan canonical forms for a matrix A = T((123)) if T is a two dimensional complex linear representation of the symmetric group S_3 .

Problem 6. Find the smallest nonnegative integer $C \ge 0$ for which $R_c = Z[x]/(c, x^2 - 2)$ is

1

(a) a domain

(b) a field.