Spring 2013: PhD Algebra Preliminary Exam

Instructions:

1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
2. Use separate sheets for the solution of each problem.

Problem 1: Let A be a Boolean ring, i.e., $a^{2}=a$ for all $a \in A$. Show that the ring A is commutative.
Problem 2: Let R be a commutative ring with identity $1_{R} \neq 0$. Let $I \subset R$ be an ideal so that R / I is a division ring. Show that I is a maximal ideal in R.

Problem 3: Suppose that n and m are natural numbers. Show that the free group of rank n is isomorphic to the free group of rank m if and only if $n=m$.

Problem 4: Let E / K be a field extension of degree $[E: K]=2^{k}$ for some $k \geq 1$. Let $f \in K[X]$ be a monic polynomial of degree 3 that has a root in E. Must f have a root in K ?
Problem 5: Consider the multiplicative group \mathbb{F}_{13}^{\times}of the field \mathbb{F}_{13}. Which elements generate the group, and which elements are squares in \mathbb{F}_{13}^{\times}?
Problem 6: Let G be a group. Prove or disprove the following statements. (a) If G is abelian, then every finite-dimensional irreducible complex representation of G is one-dimensional.
(b) If G is finite and every irreducible complex representation of G is onedimensional, then G is abelian.

