Spring 2013: PhD Algebra Preliminary Exam

Instructions:

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1: Let A be a *Boolean ring*, i.e., $a^2 = a$ for all $a \in A$. Show that the ring A is commutative.

Problem 2: Let R be a commutative ring with identity $1_R \neq 0$. Let $I \subset R$ be an ideal so that R/I is a division ring. Show that I is a maximal ideal in R.

Problem 3: Suppose that n and m are natural numbers. Show that the free group of rank n is isomorphic to the free group of rank m if and only if n = m.

Problem 4: Let E/K be a field extension of degree $[E : K] = 2^k$ for some $k \ge 1$. Let $f \in K[X]$ be a monic polynomial of degree 3 that has a root in E. Must f have a root in K?

Problem 5: Consider the multiplicative group \mathbb{F}_{13}^{\times} of the field \mathbb{F}_{13} . Which elements generate the group, and which elements are squares in \mathbb{F}_{13}^{\times} ?

Problem 6: Let G be a group. Prove or disprove the following statements. (a) If G is abelian, then every finite-dimensional irreducible complex representation of G is one-dimensional.

(b) If G is finite and every irreducible complex representation of G is onedimensional, then G is abelian.