MAT 21C Final Exam

Name: \qquad
Student ID \#: \qquad
Time and Day of Your Discussion Section\#: \qquad
Name of Left Neighbor:
Name of Right Neighbor: \qquad
If you are next to the aisle or wall, then please write "aisle" or "wall" appropriately as your left or right neighbor.

- Read each problem carefully.
- Write every step of your reasoning clearly.
- Usually, a better strategy is to solve the easiest problem first.
- This is a closed-book exam. You may not use the textbook, crib sheets, notes, or any other outside material. Do not bring your own scratch paper. Do not bring blue books.
- No calculators/laptop computers/cell phones are allowed for the exam. The exam is to test your basic understanding of the material.
- Everyone works on their own exams. Any suspicions of collaboration, copying, or otherwise violating the Student Code of Conduct will be forwarded to the Student Judicial Board.

	Problem \#	Score
1	$(15 \mathrm{pts})$	
2	$(10 \mathrm{pts})$	
3	$(10 \mathrm{pts})$	
4	$(10 \mathrm{pts})$	
5	$(10 \mathrm{pts})$	
6	$(10 \mathrm{pts})$	
7	$(10 \mathrm{pts})$	
8	$(15 \mathrm{pts})$	
9	$(15 \mathrm{pts})$	
10	$(15 \mathrm{pts})$	
11	$(15 \mathrm{pts})$	
12	$(15 \mathrm{pts})$	
Total	$(150 \mathrm{pts})$	

Problem 1 (15 pts) Does the following series converge or diverge? Give reasons for your answer.
(a) $(7 \mathrm{pts})$

$$
\sum_{n=1}^{\infty} \frac{5}{2 n^{2}+4 n+3}
$$

(b) (8 pts)

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{n}}
$$

Hint: You may want to use the fact:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\mathrm{e} \approx 2.718
$$

Problem 2 (10 pts) Find the radius and the interval of convergence of the series

$$
\sum_{n=0}^{\infty} \frac{(-3)^{n} x^{n}}{\sqrt{n+1}}
$$

Problem 3 (10 pts) Consider the function $f(x)=\sqrt{1+x}$.
(a) (5 pts) Approximate $f(x)$ by a Taylor polynomial of degree 1 centered at 0 . Compute the value of $\sqrt{2}$ using that approximation.
(b) (5 pts) How accurate is this approximation when $0 \leq x \leq 1$? You can express the approximation error either by fraction or by three decimal point number. Then, confirm that the approximate value of $\sqrt{2}$ computed in Part (a) is within this error. Note that the precise value of $\sqrt{2}$ up to 4 digits is 1.414.

Problem 4 (10 pts) Let $P(1,4,6), Q(-2,5,-1), R(1,-1,1)$.
(a) $(5 \mathrm{pts})$ Find the area of the triangle $\triangle P Q R$.

Hint: Length of the cross product of two vectors is equal to the area of a parallelogram formed by those two vectors.
(b) $(5 \mathrm{pts})$ Find the distance from P to the line $Q R$.

Problem 5 (10 pts) Find the limit if it exists, or show that the limit does not exist.
(a) (5 pts)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}
$$

Hint: Consider $(x, y) \rightarrow(0,0)$ along the line $y=x$ and along the parabola $y=x^{2}$.
(b) (5 pts)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}
$$

Hint: Consider the limit in the polar coordinates (r, θ).

Problem 6 (10 pts) Verify that the function of two variables

$$
u(x, t)=\mathrm{e}^{-\alpha^{2} k^{2} t} \sin k x
$$

is a solution of the heat conduction equation:

$$
u_{t}=\alpha^{2} u_{x x} .
$$

Problem 7 (10 pts) Assuming that the equation

$$
x \mathrm{e}^{y}+\sin (x y)+y-\ln 2=0
$$

defines y as a differentiable function of x, use the Implicit Differentiation Theorem to find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point $(x, y)=(0, \ln 2)$.

Problem 8 (15 pts) Find the direction in which $f(x, y)=\sin x+\mathrm{e}^{x y}$
(a) (5 pts) Increases most rapidly at the point $(0,1)$,
(b) $(5 \mathrm{pts})$ Decreases most rapidly at the point $(0,1)$.
(c) $(5 \mathrm{pts})$ Does not change (i.e., is flat) at the point $(0,1)$.

Problem 9 (15 pts) Consider the sphere with radius $r>0$ in $3 \mathrm{D}, x^{2}+y^{2}+z^{2}=r^{2}$.
(a) (7 pts) Find the tangent plane at the point $\left(\frac{r}{\sqrt{3}}, \frac{r}{\sqrt{3}}, \frac{r}{\sqrt{3}}\right)$ on this sphere.
(b) (8 pts) Show that every normal line to this sphere passes through the center of the sphere, i.e., the origin.

Hint: Pick any point (a, b, c) on this sphere, and consider the normal line at that point.

Problem 10 (15 pts) Let $f(x, y)=2 x^{2}+y^{2}$.
(a) $(8 \mathrm{pts})$ Find the linearization at the point $(1,1)$. Then use it to approximate $f(1.1,0.9)$. Compare the approximate value with the true value.
(b) (7 pts) Approximate $f(2,2)$ using the same linearization. Compare the approximate value with the true value. At which point is the linear approximation better, $(1.1,0.9)$ or $(2,2)$?

Problem 11 (15 pts) Consider the following function over the closed domain $D=\{(x, y) \mid-\pi \leq$ $x \leq \pi,-\pi \leq y \leq \pi\}:$

$$
f(x, y)=x \cos y
$$

(a) (7 pts) Find the local maxima, local minima, saddle points of f if any.
(b) (8 pts) Find the absolute maxima and absolute minima.

Problem 12 (15 pts) Use Lagrange multipliers to find the maximum and minimum values of the function

$$
f(x, y)=\mathrm{e}^{x y} \quad \text { subject to } \quad x^{2}+y^{2}=1 .
$$

Note that we only consider the real values for x and y, not the complex values.

