Problem 1 (10 points). Bring the following integer matrix A to its canonical form $\left[\begin{array}{llll}d_{1} & & & \\ & d_{2} & \\ & & d_{3}\end{array}\right]$ by multiplying elements of $G L_{3}(\mathbb{Z})$ from the left, and elements of $G L_{4}(\mathbb{Z})$ from the right, where the entries satisfy $0<d_{1}$, and $d_{1}\left|d_{2}\right| d_{3}$.

$$
A=\left[\begin{array}{llll}
2 & 2 & 2 & 2 \\
& 3 & 3 & 3 \\
& & 4 & 4
\end{array}\right]
$$

Identify the structure of the \mathbb{Z}-module V presented by $A: \mathbb{Z}^{4} \longrightarrow \mathbb{Z}^{3}$.
Problem 2 (10 points). This problem concerns basic definitions.
(1) [3 points] Let R be a commutative ring with 1 . Give the definition of a finitely generated R-module V.
(2) [3 points] Let F be a field and $f(x) \in F[x]$ a polynomial. State the definition of a splitting field of $f(x)$ over F.
(3) [4 points] Let K be a finite extension field of another field F. State the definition that K is a Galois extension of F.

Problem 3 (10 points). Let a and b be two positive integers that are relatively prime. Prove that as a \mathbb{Z}-module, $\mathbb{Z} /(a) \oplus \mathbb{Z} /(b)$ and $\mathbb{Z} /(a b)$ are isomorphic:

$$
\mathbb{Z} /(a) \oplus \mathbb{Z} /(b) \cong \mathbb{Z} /(a b),
$$

where $(a) \subset \mathbb{Z}$ denotes the ideal generated by $a \in \mathbb{Z}$. You can use any method you like.
Problem 4 (10 points, 2 points each). Let $\omega=e^{2 \pi i / 3}$ be a primitive cubic root of unity, and let $K=\mathbb{Q}(\sqrt{2}, \omega)$ be an algebraic extension of \mathbb{Q}. Solve the following problems. Give your reason for each of the problems.
(1) Find the extension degree $[K: \mathbb{Q}]$.
(2) Prove that K is a Galois extension of \mathbb{Q}.
(3) Identify the Galois group $\operatorname{Gal}(K / \mathbb{Q})$.
(4) Find all distinct subgroups of $\operatorname{Gal}(K / \mathbb{Q})$.
(5) List all intermediate fields of the extension $\mathbb{Q}(\sqrt{2}, \omega)$ over \mathbb{Q}.

Problem 5 (10 points, 2 points each). Let K be a finite field of order $q=125$. Answer each of the following questions. Give your reason as well.
(1) What is the characteristic $p=\operatorname{ch}(K)$ of the field K ?
(2) For the characteristic you have determined in the above, what is the extension degree $\left[K: \mathbb{F}_{p}\right]$?
(3) What is the multiplicative group K^{\times}? Identify its structure.
(4) There is a monic positive degree polynomial $f(x) \in \mathbb{F}_{p}[x]$ such that every element $\alpha \in K$ satisfies that $f(\alpha)=0$. What is it?
(5) What is 3^{125} in $\mathbb{Z} /(5)$?

Problem 6 (10 points). A \mathbb{Z}-module V is called simple if it is not the zero module $\{0\}$ and has no non-trivial \mathbb{Z}-submodules other than V itself. Classify all simple \mathbb{Z}-modules.

