Problem 1 (10 points). Bring the following integer matrix A to its canonical form $\begin{bmatrix} a_1 \\ & d_2 \end{bmatrix}$

by multiplying elements of $GL_3(\mathbb{Z})$ from the left, and elements of $GL_4(\mathbb{Z})$ from the right, where the entries satisfy $0 < d_1$, and $d_1|d_2|d_3$.

$$A = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 3 & 3 & 3 \\ & 4 & 4 \end{bmatrix}$$

Identify the structure of the \mathbb{Z} -module V presented by $A : \mathbb{Z}^4 \longrightarrow \mathbb{Z}^3$.

Problem 2 (10 points). This problem concerns basic definitions.

- (1) [3 points] Let R be a commutative ring with 1. Give the definition of a **finitely** generated R-module V.
- (2) [3 points] Let F be a field and $f(x) \in F[x]$ a polynomial. State the definition of a splitting field of f(x) over F.
- (3) [4 points] Let K be a finite extension field of another field F. State the definition that K is a **Galois extension** of F.

Problem 3 (10 points). Let a and b be two positive integers that are relatively prime. Prove that as a \mathbb{Z} -module, $\mathbb{Z}/(a) \oplus \mathbb{Z}/(b)$ and $\mathbb{Z}/(ab)$ are isomorphic:

$$\mathbb{Z}/(a) \oplus \mathbb{Z}/(b) \cong \mathbb{Z}/(ab),$$

where $(a) \subset \mathbb{Z}$ denotes the ideal generated by $a \in \mathbb{Z}$. You can use any method you like.

Problem 4 (10 points, 2 points each). Let $\omega = e^{2\pi i/3}$ be a primitive cubic root of unity, and let $K = \mathbb{Q}(\sqrt{2}, \omega)$ be an algebraic extension of \mathbb{Q} . Solve the following problems. Give your reason for each of the problems.

- (1) Find the extension degree $[K : \mathbb{Q}]$.
- (2) Prove that K is a Galois extension of \mathbb{Q} .
- (3) Identify the Galois group $\operatorname{Gal}(K/\mathbb{Q})$.
- (4) Find all distinct subgroups of $\operatorname{Gal}(K/\mathbb{Q})$.
- (5) List all intermediate fields of the extension $\mathbb{Q}(\sqrt{2}, \omega)$ over \mathbb{Q} .

Problem 5 (10 points, 2 points each). Let K be a finite field of order q = 125. Answer each of the following questions. Give your reason as well.

- (1) What is the characteristic p = ch(K) of the field K?
- (2) For the characteristic you have determined in the above, what is the extension degree $[K : \mathbb{F}_p]$?
- (3) What is the multiplicative group K^{\times} ? Identify its structure.
- (4) There is a monic positive degree polynomial $f(x) \in \mathbb{F}_p[x]$ such that every element $\alpha \in K$ satisfies that $f(\alpha) = 0$. What is it?
- (5) What is 3^{125} in $\mathbb{Z}/(5)$?

Problem 6 (10 points). A \mathbb{Z} -module V is called simple if it is not the zero module $\{0\}$ and has no non-trivial \mathbb{Z} -submodules other than V itself. Classify all simple \mathbb{Z} -modules.