Math 150c: Modern Algebra Final Exam

1. If M is a module over a ring R, then an element $r \in R$ is said to annihilate M if $r m=0$ for all $m \in M$. Consider the plane \mathbb{R}^{2} as a module over $\mathbb{R}[x]$ with x acting by the matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) .
$$

Find a non-zero element of $\mathbb{R}[x]$ that annihilates this module.
2. If a group has 64 elements, what are the possible dimensions of its complex irreducible representations? (For example, can it have a 57 -dimensional irrep?) You do not have to produce examples for the dimensions that you think are possible; just combine all of the restrictions that are available from established theorems.
3. Let G be a finite group, and let $A=\frac{1}{|G|} \sum_{g \in G} g$ be the averaging element in the group algebra $\mathbb{C}[G]$. Is this element always, sometimes, or never in the center of $\mathbb{C}[G]$?
4. For each positive integer n, the nth root $\sqrt[n]{5}$ may or may not be constructible using the field operations $(+,-, \times, \div)$, square roots, and integers. Construct $\sqrt[n]{5}$ for those n for which this is possible. For the others, explain why it is not constructible. (You can use the fact that $x^{n}-5$ is an irreducible polynomial for every n.)
5. The polynomial $x^{8}+x^{5}+x^{3}+x \in \mathbb{F}_{2}[x]$ vanishes identically as a function from \mathbb{F}_{2} to \mathbb{F}_{2}. (That is, both of its values are zero.) Show that there is a larger field \mathbb{F}_{q} with $q=2^{k}$ such that the same polynomial does not vanish as a function from \mathbb{F}_{q} to \mathbb{F}_{q}.
6. Recall that $\omega=e^{2 \pi i / 7}$ has minimal polynomial $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$ over \mathbb{Q}. Using this fact, find the minimal polynomial of $\cos \frac{2 \pi}{7}$.
7. Find the dimension of the field $\mathbb{Q}(\sqrt{1-\sqrt{3}})$ as a vector space over \mathbb{Q}.
8. Does the polynomial $x^{4}+2 x^{3}-x^{2}-2 x+1$ have any repeated roots? (Read it as a polynomial over \mathbb{Q} with roots in \mathbb{C}.)

