Math 150c: Modern Algebra Final Exam

1. If *M* is a module over a ring *R*, then an element $r \in R$ is said to *annihilate M* if rm = 0 for all $m \in M$. Consider the plane \mathbb{R}^2 as a module over $\mathbb{R}[x]$ with *x* acting by the matrix

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

Find a non-zero element of $\mathbb{R}[x]$ that annihilates this module.

- 2. If a group has 64 elements, what are the possible dimensions of its complex irreducible representations? (For example, can it have a 57-dimensional irrep?) You do not have to produce examples for the dimensions that you think are possible; just combine all of the restrictions that are available from established theorems.
- **3.** Let *G* be a finite group, and let $A = \frac{1}{|G|} \sum_{g \in G} g$ be the averaging element in the group algebra $\mathbb{C}[G]$. Is this element always, sometimes, or never in the center of $\mathbb{C}[G]$?
- 4. For each positive integer n, the nth root ⁿ√5 may or may not be constructible using the field operations (+, -, ×, ÷), square roots, and integers. Construct ⁿ√5 for those n for which this is possible. For the others, explain why it is not constructible. (You can use the fact that xⁿ 5 is an irreducible polynomial for every n.)
- 5. The polynomial $x^8 + x^5 + x^3 + x \in \mathbb{F}_2[x]$ vanishes identically as a function from \mathbb{F}_2 to \mathbb{F}_2 . (That is, both of its values are zero.) Show that there is a larger field \mathbb{F}_q with $q = 2^k$ such that the same polynomial does not vanish as a function from \mathbb{F}_q to \mathbb{F}_q .
- 6. Recall that $\omega = e^{2\pi i/7}$ has minimal polynomial $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ over \mathbb{Q} . Using this fact, find the minimal polynomial of $\cos \frac{2\pi}{7}$.
- 7. Find the dimension of the field $\mathbb{Q}(\sqrt{1-\sqrt{3}})$ as a vector space over \mathbb{Q} .
- 8. Does the polynomial $x^4 + 2x^3 x^2 2x + 1$ have any repeated roots? (Read it as a polynomial over \mathbb{Q} with roots in \mathbb{C} .)