1. Let (X, d) be a metric space, and let $\{f_n : X \to \mathbb{R}\}$ be an equicontinuous sequence of functions. Consider the set

$$C = \{ x \in X \mid f_n(x) \text{ converges} \}.$$

- a) Prove C is closed.
- b) Let X = [-1, 1] with the Euclidean metric. Give an example where $C = \{0\}$.
- 2. Let X be a separable Banach space. Show that there is an isometric embedding from X to $(\ell^{\infty}, || \cdot ||_{\infty})$ (i.e. the space of bounded sequences).
- 3. Let (X, Σ, μ) be a measure space, and $a_k : X \to [0, \infty]$ be a μ -measuable function for each k with

$$\int_X a_k(x) d\mu \le \frac{1}{2^k}$$

Show that the series $\sum_{k=1}^{\infty} a_k(x)$ is convergent for μ -almost every $x \in X$.

4. Consider the Hilbert space $L^2(\mathbb{T})$ of periodic L^2 functions on $[-\pi, \pi]$. For each of the following three sequences, determine and prove whether they converge strongly, weakly but not strongly, or diverge.

$$f_n(x) = n \cdot \chi_{[0,\frac{1}{n})} \qquad g_n(x) = n^{\frac{1}{2}} \cdot \chi_{[0,\frac{1}{n})} \qquad h_n(x) = e^{inx}$$

- 5. Suppose f is a bounded monotonic function on $[-\pi,\pi]$. Show that $f \in H^s(\mathbb{T})$ for any $0 \le s < \frac{1}{2}$.
- 6. Suppose $f \in C_0^{\infty}(\mathbb{R})$ such that $\left|\frac{d^n f}{dx^n}(x)\right| \leq 1$ for all $x \in \mathbb{R}$ for all integers $n \geq 1$ and f(x) = 0 for all |x| > 1. Show that \hat{f} (the Fourier transform $\hat{f}(\xi) = \int_{\mathbb{R}} f(x) e^{-2\pi i \xi x} dx$) satisfies the following estimate

$$\left|\hat{f}(y)\right| \leq \frac{2}{(2\pi)^n} |y|^{-n}$$
 for all $y \in \mathbb{R}$ and all $n \geq 1$.