Name:

1. (Frobenius)

Assume that p and r are primes and write $q=p^{r}, \phi \in A u t \mathbb{F}_{q}$ for the Frobenius automorphism (defined by $\phi(a)=a^{p}$) and $C \leq A u t \mathbb{F}_{q}$ for the cyclic group generted by ϕ.
Show that all the orbits of the action of C on $\mathbb{F}_{q}-\mathbb{F}_{p}$ are the same size. Hint: Show that there are no intermediate fields.
2. (Sylow)

Show that no group of order 30 is simple.
Hint: Show that if G is a finite simple group and n_{p} is the number of p-Sylow subgroups of G for some p dividing $|G|$ then $|G|$ divides n_{p} !.
3. (Splitting)

Consider the complex number $a=\sqrt{6}+\sqrt{10}+\sqrt{15}$.
Take $p(x) \in \mathbb{Q}[x]$ to be the minimal polynomial for a over \mathbb{Q}.
Take $K=S p l_{\mathbb{Q}}(p)$ to be the splitting field.
Find the Galois group $A u t(K)$.
Hints: There is no need to find the minimal polynomial.
Show that K is a proper subfield of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$.
4. (Algebraic)

Assume that $\alpha, \beta \in \mathbb{C}$ are complex numbers and $p(x)=\sum_{i=0}^{n} a_{i} x^{i}$, $q(x)=\sum_{i=0}^{m} b_{i} x^{i} \in \mathbb{C}[x]$ are polynomials with $p(\alpha)=q(\beta)=0$.
Write $K=\left\langle a_{0}, \ldots a_{n}, b_{0}, \ldots b_{m}\right\rangle \subseteq \mathbb{C}$ for the subfield of \mathbb{C} generated by the coefficients of p and q.
Show that there is another polynomial $r(x) \in K[x]$ with $r(a+b)=0$.
5. (Semidirect)

Show that if $G=A \rtimes_{\phi}\left(B \rtimes_{\psi} C\right)$ then there are N and ρ so that $G=N \rtimes_{\rho} C$.
6. (Separability)

Find the number of (distinct) roots of $p(x)=x^{6}+y x^{3}+y \in \overline{\mathbb{F}_{3}(y)}[x]$.
7. (Isomorphisms)

If $Y \leq H$ is a subgroup and $f: X \rightarrow H$ is a group homomorphism with image contained in the normalizer of Y then

$$
[\operatorname{Im}(f) \cdot Y] / Y \cong X / f^{-1}(Y)
$$

Note: This makes a nice braid-like commutative diagram.

