MAT 280: Morse and Cerf theory in low dimensions

<u>Term:</u> Spring 2023 <u>Professor:</u> Gabriel Islambouli Office: MSB 2214 Email: islambouli@ucdavis.edu

Course Content

The goal of the course is to use Morse and Cerf theory to understand surfaces, then bootstrap this understanding to 3- and 4-manifolds. The class will begin with an introduction to spaces of smooth mappings. After establishing the tools, we apply them in two dimensions to obtain a classification of smooth surfaces and a proof that the mapping class group is generated by Dehn twists. In three dimensions, we will study Heegaard splittings and give a Cerf theoretic proof of the Reidemeister-Singer theorem and of Kirby's theorem. If time remains, we will use our tools to understand 4-manifolds through maps of 4-manifolds to surfaces.

Readings

The class will be patched together from a couple of sources. Below are the books and papers we will follow in the order in which they will appear in our class.

Title	Author	
An Introduction to Morse Theory	Matsumoto	
A proof of Reidemeister-Singer's theorem by Cerf's methods	Laudenbach	
Knots and Links	Rolfsen	
Stable mappings and their singularities	Golubitsky, Guillemin	
A primer on mapping class groups	Farb, Margalit	
A presentation for the mapping class group of a closed orientable surface	Hatcher, Thurston	
Functions on Surfaces and constructions of manifolds in dimensions three, four, and five	David Gay	

Assessments and Grading

There will be two graded homework assignments as well as a 20 minute presentation at the end of the quarter on a topic related to the course chosen by the student. A list of suggested topics will be provided.

Your grade will be calculated as follows:

Category	Weight
Homework	50%
Final Presentation	50%

Tentative Schedule:

Week	Topics	Assessments	References
Apr 3 –	Existence of Morse functions, Morse		Matsumoto Chapter
Apr 7	theory on surfaces, Handle		1
	Decompositions.		
Apr 10 –	Gradient-like vector fields, Handle		Matsumoto Chapters
Apr 14	cancellation, Handle Rearrangement,		2 and 3. Laudenbach
	Handle Slides.		paper.
Apr 17–	Heegaard Splittings, Introduction to		Farb-Margalit Ch 1-3.
Apr 21	mapping class groups.		Rolfsen 9C.
Apr 24–	Overview of Cerf theory, Generating	Homework 1	A primer on Mapping
Apr 28	the mapping class group.	Due Apr 24th	class groups Ch 4.
May 1 –	Surgery and handles. Surgery on 3-		Rolfsen Chapter 9.
May 5	manifolds. The 3-d cobordism group.		
May 8 –	4-manifolds and Kirby calculus. Some		Matsumoto 5.3.
May 12	foundations for Cerf Theory		Guilleman-Golubitsky
			Ch. 3, 6.4, 6.5 and 7.6
May 15 –	Presentations for the mapping class	Homework 2	Hatcher-Thurston
May 19	group.	Due May 15th	paper
May 22 –	Remarks on 4-manifolds and		David Gay paper
May 26	cobordism groups.		
May 29 –	Class Presentations	Presentations	See reading list
Jun 2			
Jun 5 –	Class Presentations	Presentations	See Reading list
Jun 7			

Resources and Expectations

<u>Academic Integrity</u>: Cheating will be taken very seriously in this course. Familiarize yourself with the code of academic conduct, which can be found at: <u>https://ossja.ucdavis.edu/code-academic-conduct</u>.

Etiquette: There are usually no issues here, but it needs to be said: don't be disruptive and be respectful of your fellow classmates.

<u>Accommodations</u>: Any student with a documented disability who needs to arrange reasonable accommodations must contact the Student Disability Center (SDC). Faculty are authorized to provide only the accommodations requested by the SDC. You can get more information at the SDC website: <u>https://sdc.ucdavis.edu/</u> or by emailing <u>sdc@ucdavis.edu</u>.