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2 Proposed Research Talk

2.1 Background and Motivation: Inverse Curvature
Flows and the Riemannian Penrose Inequality

The study of Mean Curvature Flow (MCF) arises naturally in Riemannian
geometry. Given a closed smooth manifold Σ and a one-parameter family of
embeddings ft : Σ → M into a Riemannian manifold (M, g) with codimen-
sion greater than zero, we say Σt is a solution to the MCF if

dΣt

dt
= −Hν (1)

where Σt = ft(Σ), ν is the outward-pointing unit normal, and H is the mean
curvature of Σt in (M, g). MCF can be shown to be the gradient flow for the
area of a surface, and it is obvious from (1) that the equilibrium solutions
of MCF are surfaces of vanishing mean curvature, i.e. minimal surfaces of
(M, g), see [Cho15]. Inverse mean curvature flow (IMCF), whose solution is
a one-parameter family of closed surfaces Σt in (M, g) satisfying

dΣt

dt
=

1

H
ν (2)

has also garnered considerable interest from geometers in recent decades, al-
though the underlying motivation for the study of IMCF is quite different
than the underlying motivation for the study of MCF. Specifically, IMCF has
proven to be a powerful tool in the mathematical study of general relativity.

The concept of mass in general relativity has a long and complicated
history. One definition involves considering certain spacelike hypersurfaces
of 4-dimensional Lorentzian manifolds and thus can be formulated strictly
through the viewpoint of Riemannian Geometry. One such type of hypersur-
face is called an asymptotically Euclidean manifold.

Definition 1. A 3-dimensional Riemannian Manifold (M, g) is called asymp-
totically Euclidean if there exists a compact set K ⊂M such that

1. There exsits a diffeomorphism y : M \K → R3 \B1(0)

2. In this coordinate chart, the components of g satisfy
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gij − δij = O(|y|−α) (3)

∂kgij = O(|y|−α−1) (4)

for some α > 1
2
.

Furthermore, (M3, g) is called Harmonically flat at infinity if there exists a
chart satisfy the above conditions where gij(y) = u(y)4δij for some scalar
function u.

Definition 2. Given an asymptotically Euclidean 3-manifold (M3, g), define
its ADM Mass mADM to be

mADM =
1

16π
lim
σ→∞

∫
Sσ

gij,iνj − gii,jνjdµ (5)

One might notice that the right-hand side of (5) involves partial deriva-
tives and thus appears to be coordinate-dependent quantity– and indeed it
is! However, one can also show that this quantity is invariant over charts
which satisfy the decay condition (3). Thus mADM provides a well-defined
notion of total mass of an Asymptotcially Euclidean spacelike hypersurface
of a spacetime.

One central conjecture about the ADM Mass of an asymptotically Eu-
clidean manifold was the Riemannian Penrose Inequality (RPI).

Theorem 1 (Riemannian Penrose Inequality). Let (M3, g) be a complete
Riemannian 3-manifold with nonnegative scalar curvature which is harmoni-
cally flat at infinity. If (M3, g) admits an outermost minimal surface Σ, then
the inequality

mADM ≥
√
|Σ|
16π

(6)

holds, with equality if and only if (M3, g) ' (R3 \ 0, gS), where gS is the
spatial Schwarzschild metric given by

gS = (1 +
m

2|x|
)4δij (7)
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Here, the outermost minimal surface is defined as the minimal surface
bounding an open subset of M formed by the union of all open subsets of
M which are bounded by minimal surfaces. In the context of general rela-
tivity, the outermost minimal surface over a constant-time slice of a black
hole spacetime corresponds to the black hole’s event horizon (Though one
must note though that for the Riemannian Penrose Inequality to provide
information about the spacetime geometry, the spacelike hypersurface must
be totally geodesic within the spacetime, see [BC03]). Thus intuitively the
RPI provides a lower bound on a black hole’s total mass in terms of its area.

The inequality was originally proven by Huisken and Illamen in [HI01].
IMCF proved to have a property which, given certain long-time existence
and convergence properties, would immediately imply the RPI.

Definition 3. Given a smooth submanifold Sigma of (M, g), its Hawking
Mass mH is given by

mH(Σ) =

√
|Σ|
16π

(1−
∫

Σ

H2dσ) (8)

Notice that if Σ is the outermost minimal surface of (M, g), thenmH(Σ) =√
|Σ|
16π

. The critical property of IMCF is that the Hawking Mass is non-

decreasing along the flow. Furthermore, the Hawking Mass of round spheres
at infinity approximates the ADM mass of (M, g) from below. Therefore,
if one flows by IMCF starting from an outermost minimal surface Σ0 = Σ
and the IMCF converges to round spheres at infinity, monotonicty directly
implies the RPI in 3 dimensions.

Of course, there are a number of pathologies arising in this flow, most
notably that the right-hand side of (2) is undefined whenever Σt has a point
of vanishing mean curvature. It is for this reason, Huisken and Illamen used
a generalization of IMCF. This ”weak” IMCF is equivalent to IMCF over
flows with non-vanishing mean curvature, but over flows where the IMCF
approaches a surface whose mean curvature vanishes somewhere, weak IMCF
will ”jump past” these problematic regions. For a more in-depth discussion
of weak IMCF, see [HI01].
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2.2 The Asymptotically Hyperbolic Case

In recent years, another class of Riemannian manifolds known as Asymp-
totically Hyperbolic (AH) Manifolds have received an increasing amount of
interest from physicists and geometers. Our definition of an AH manifold
given in [All18] appeals to conformal compactifications.

Definition 4. Let M̄ be a smooth, compact n+ 1-dimensional manifold with
boundary ∂M and interior M . Given a Riemmannian metric g on M , the
Riemannian manifold (M, g) is said to be conformally compact if there exists
a smooth function ρ ∈ C∞(M̄) with ρ−1(0) = ∂M , dρ 6= 0 on ∂M such that
the metric ρ2g extends continuously to a non-degenerate metric on M .

One familiar example of a conformally compact Riemannian manifold is
the Poincare Ball B2(0) equipped with the metric g = 4

1−|x|2
2
dx2

i . Indeed,

although the open ball B2(0) is already geodesically complete with respect

to g, conformally rescaling by the defining function ρ = 1−|x|2
2

, we can extend
ḡ = ρ2g = δ to the Euclidean metric over B̄2(0). In fact, this is the proto-
typical example of an AH manifold.

Definition 5. A conformally compact Riemannian manifold (M3, g) is called
asymptotically hyperbolic if

1. The conformal boundary of (M̄, ḡ) is the standard sphere (S2, g0).

2. The defining function ρ satisfies

|dρ|2ḡ = 1 (9)

Over M for ḡ = ρ2g.

3. We may write in a collar neighborhood of the conformal boundary

g = sinh−2(ρ)(dρ2 + gρ) (10)

With

gρ = g0 +
rn

n
h+O(ρn+1) (11)

Where h is a symmetric 2-tensor on Sn−1 and gρ is the metric induced
over a level set of ρ.
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One may show that the sectional curvatures of g approach −|dρ|2ḡ = −1
near the conformal boundary, hence the name.
Wang in [Wan01] uses the Conformal Boundary (S2, gS2) to define the mass
of an AH Manifold.

Definition 6. The Wang Mass of an asymptotically hyperbolic manifold is
defined as

m = ((

∫
S2

trgS2hdµgS2 )2 − (

∫
S2

xitrgS2hdµgS2 )2)
1
2 (12)

Naturally, one would like to find an analog of the RPI for the Wang Mass,
and this has been a central focus in the study of AH Manifolds in recent years.

The conjectured Riemannian Penrose Inequality for AH Manifolds is as
follows:

Conjecture 1 (Riemannian Penrose Inequality for Asymptotically Hyper-
bolic Manifolds). Let (M3, g) be an asymptotically hyperbolic 3-manifold with
R ≥ −6 and an outermost sphere with Σ0 with H = 2. Then

m ≥
√
|Σ|
16π

(13)

With equality if and only if (M3, g) is isometric to the Anti de Sitter-Schwarzschild
space outside Σ0.

Initially, the research community hoped that Huisken and Illamen’s method
of exploiting monotonicity of the Hawking Mass to obtain the RPI in the AE
setting could be translated to the AH setting. Although IMCF mantains
its monotonicty property over AH manifolds for the modified Hawking Mass
mH(Σ) = |Σ|

8π
(1−

∫
Σ

(H2−4)dσ, a result by Neves in [Nev10] showed that the
convergence properties of IMCF on an AH manifold are in general insufficient
to allow for an identical argument.

Theorem 2. There is an asymptotically hyperbolic 3-manifold (M, g) with
scalar curvature −6 and for which its boundary Σ0 is an outer-minimizing
H(Σ0) = 2 sphere such that the solution of IMCF with initial condition Σ0

does not converge to round spheres at infinity.
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This construction begins with an initial surface in Anti deSitter Schwarzschild
space whose IMCF does not converge to round spheres at infinity, in the sense
that the Gauss curvatures of the Σt do not approach 1 as t→∞. Next, Neves
constructs a new metric over the region of ADS-Schwarzschild foliated by Σt

using a scalar function u satisfying u|Σ0 =
HΣ0

2
. Given that gADSS can be

written

gADSS =
dt2

H2
+ gt (14)

where the t coordinate is given by the flow parameter and gt is the metric
induced on Σt. He defines a new metric g by

ĝ =
u2dt2

H2
+ gt (15)

Note that since the t direction is normal to Σt, one can readily compute
the new mean curvature as Ĥ(Σt) = H(Σt)

2
and ν̂ = ν

u
. This implies both that

Ĥ(Σ0) = 2 and that ν̂

Ĥ
= ν

H
. So the initial surface is an outermost H = 2

surface with respect to ĝ and the solution to the IMCF with respect to ĝ is the
solution to the IMCF with respect to g. Since both ambient metrics induce
the same metric on Σt, we know by the Theorem Egregium of Gauss that
the Gauss curvatures of Σt with respect to the re-normalized metric |Σt|ĝ
must not converge to 1, and the limit of the Hawking Mass overestimates the
Wang Mass of the foliated region, and thus the monotonicity argument in its
current incarnation is inapplicable.

2.3 Thesis Goals and Future Work

The ultimate goal of the thesis would be to find some other means of prov-
ing the RPI for AH Manifolds. Though the route of utilizing the properties
of IMCF appears less straightforward than expected, it could very well be
that some sort of geometric flow, be it intrinsic or extrinsic, holds the key to
providing a proof of this conjecture.
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2.3.1 Uniqueness of Hawking Mass Monotonicty along IMCF

First, it is clear from the previous section that the convergence properties of
IMCF on AH manifolds are not well-understood. As a stepping stone toward
a more complete picture of these properties, I plan to begin the project by
studying IMCF in Hn+1, a topic which has seen progress in recent years. In
[Ger11], Gerhardt showed that in Hn+1 if one takes the initial hypersurface
to be star-shaped with respect to a point, then the IMCF will exist for all
time, and its leaves will both become strongly convex and have principal
curvatures approaching 1 exponentially fast. It should be noted that, like in
Neves’s counterexample, the Gauss curvature will in general not converge to
1 with respect to the renormalized induced metric ĝt = |Σ|gt, as shown by
Hung and Wang in [HW15]

Another note of interest on Gerhardt’s work is that his results generalize
to a larger family of curvature flows in Hn+1: he proved the above result for
any curvature flow of the form

dΣ

dt
= −Φ(F )ν (16)

where F is a degree 1 polynomial of the principal curvatures of Σt, i.e.
F (Σ) = c0 +

∑
i ciki where ki are the eigenvalues of the Second Fundamental

Form of Σ, and Φ is any function of F with Φ̇ > 0 and Φ̈ < 0.

One potentially interesting question is whether or not there exist any
other curvature flows in this family which carry the monotonicity property
for the Hawking Mass, and if so, whether or not such a flow maintains this
monotonicity property on any AH manifold. If there does exist another in-
verse curvature flow over which the Hawking Mass is monotone, a natural
next step would be to check if the existing counterexample to convergence
to round spheres at infinity still applies to it. Indeed, some alternative flow
might be necessary to translate Huisken and Illamen’s original argument to
the AH setting.

2.3.2 IMCF over Non Star-Shaped Surfaces

I also hope to understand which of these results may be applied to a more
general class of hypersurfaces or to a different ambient AH Manifold. Some
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progress was made on this former by Allen in [All18], where he showed long-
time existence for IMCF for a family of non-compact hypersurfaces in Hn+1,
namely bounded graphs over horospheres. Some progress on the latter was
made by Lu in [Lu17] managed to show longtime existence, smoothness, and
convergence of principal curvatures to 1 for IMCF for star-shaped initial hy-
persurfaces in ADS-Schwarzschild space.

In [Ger11] and [Lu17], the initial hypersurface was taken to be star-shaped
with respect to some point p so that it may be viewed as a graph in the ra-
dial coordinate with respect to geodesic normal coordinates centered at p.
While in the short term I would still limit my study to graphical hypersur-
faces of Hn+1 and ADS-Schwarzschild, I would like to understand which of
these convergence properties hold over graphical initial surfaces which are
not necessarily star-shaped. Thus I plan to study IMCF in Hn+1 over some
graphical non-star-shaped initial surfaces, possibly the DeLaunay surfaces
given in [Kor+92]. Regardless of whether or not this proves a stepping stone
in a proof of the RPI in the AH setting, it will at the very least improve the
understanding IMCF in Hn+1

2.3.3 Curvature Bounds for IMCF over all AH Manifolds

The underlying ambition is still a proof of the RPI for asymptotically hy-
perbolic manifolds, and as such, I will eventually transition to a study of
IMCF on all such spaces, or at least a larger subset of them. Natural ques-
tions arise about long-time existence, smoothness, and curvature estimates
of solutions over other AH spaces. For example, Gerhardt obtains that over
star-shaped initial hypersurfaces with positive mean curvature that the mean
curvature is bounded away from 0 for all times. One then might ask if this
is true for any star-shaped surface in an AH space. This would imply that
the weak formulation of IMCF presented by Huisken and Illamen would not
be necessary when considering such initial surfaces. Some analytic aspects
of studying IMCF may prove less tractable when one is not working with a
specific background metric. However, it is also possible that the geometry
of these manifolds may provide some insight into various other properties of
the flow.
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3 Proposed Qualifying Exam Syllabus

1. Analysis

• Banach Spaces

– Bounded and compact mappings

– Spaces of continuous functions

– Examples of Banach spaces

• Measure Theory

– Pre-measures and outer measures

– Lebesgue Measure, Atomic Measure

– Monotone Convergence Theorem, Dominated Convergence The-
orem, Fatou’s Lemma

– Absolutely continuous measures, Radon-Nikodym Theorem

• Fourier Analysis

– Fourier bases of L2, Fourier characterization of Hs

– The Fourier Transform on Schwartz functions

– Riemann-Lebesque Lemma, Plancherel’s Theorem

Reference Text(s): Applied Analysis, J. Hunter, B. Nachtergaele. Mea-
sure Theory: Second Edition, D. Cohn.

2. Functional Analysis

• Spectral Theory for Hilbert Spaces

– Resolvents, Point and Residual Spectra

– Spectral Theorem for Compact, Self-Adjoint Operators

– Eigenvalue perturbations

• Characterization of Dual Spaces

– Banach-Alaglou Theorem

– Riesz Representation Theorem

– Lax-Milgram Theorem

• Miscellaneous Theorems

– Open Mapping Theorem
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– Closed Graph Theorem

– Hahn-Banach Theorem

Reference Text(s): Functional Analysis, Sobolev Spaces, and Partial
Differential Equations, H. Brezis.

3. Partial Differential Equations

• Sobolev Spaces

– Definition, Elementary Properties

– Sobolev Inequalities

– Embedding Theorems

– Trace and Extension Theorems

• Existence and Regularity Theory for Linear, Uniformly Elliptic
PDE

– Existence of Weak Solutions for Homogeneous Boundary Value
Problems

– A Priori Estimates

– Interior and Boundary Regularity of Weak Solutions

– Strong and Weak Maximum Principles, Hopf Lemma

– Existence and Regularity for Non-homogeneuous BVP

• Calculus of Variations

– First Variation, Euler-Lagrange Equations

– Second Variation

– Existence of Minimizers

Reference Text: Partial Differential Equations: Second Edition, L.
Evans. Elliptic Partial Differential Equations, Q. Han and F. Lin.

4. Smooth Manifold Theory

• Differentiable Manifolds

– Definition of Smooth Manifold

– Paracompactness, Orientability

– Smooth Maps, Immersions, Embeddings

– Submanifolds, Regular Level Set Theorem
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• Tangent and Cotangent Bundles

– Definition

– Push-forwards and Pull-backs

– Lie Derivative

– Higher-Order Tensor Fields, Exterior Derivative

• Lie Groups and Lie Algebras

– Definition of a Lie Group, examples

– Matrix Groups

– Lie Algebra of a Lie Group, Adjoint Representation, examples

– Left- and Right-Invariant Vector Fields

– Representations of U(1), SU(2)

– Complexifications of a Lie Algebra

– Representations of sl(2,C), Weights and Weight Vectors, Roots
and Root Vectors

– Semisimple Lie Algebras

– Compact Lie Groups and Reductive Lie Algebras

Reference Text(s): Introduction to Smooth Manifolds, L. Tu. Repre-
sentation Theory: A First Course, W. Fulton and J. Harris.

5. Riemannian Geometry

• Riemannian Metrics, Connections

– Definition of Riemannian Metric, Existence, Examples

– Levi-Civita Connections

– Parallel Transport, Geodesics, Exponential Map

• Curvature

– Riemann Curvature Tensor, Bianchi Identities, Ricci and Scalar
Curvature

– Sectional Curvature

– Hyperbolic Space– Isometries, Geodesics

• Hypersurface Geometry

– Gauss Curvature, Gauss-Bonnet Theorem
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– Second Fundamental Form, Mean Curvature, Totally Geodesic
Submanifolds

– Minimal Surfaces, Minimal Graph Equation

Reference Text: Riemannian Geometry, M. Do Carmo.
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