
Closedness of Mixed Integer Hulls of SOMICP
Diego A. Morán R.^ and Santanu S. Dey©
H. Milton Stewart School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA

Summary
We show that there exists a polynomial time algorithm to check the closedness of
the convex hull of the feasible region of a simple class of second order conic mixed
integer programming problems (SOCMIP). In the case of pure integer problems,
we generalize this result for the intersection of simple SOCMIP’s.

Notation and Definitions.

Second order mixed integer conic programming (SOCMIP)

Let A ∈ Qm×n1, B ∈ Qm×n2 and b ∈ Qm. The feasible region of a ‘simple’
second order conic mixed integer programming problem is given by the set

P = {(x, y) ∈ Zn1 × Rn2 | Ax +By − b ∈ Lm},

where Lm = {u ∈ Rm |
√∑m−1

i=1 u2i ≤ um} is the Lorentz cone in Rm.

• Let us define the size of the problem P as size(P) = size(A)+ size(B)+ size(b).

•We denote the translated mixed integer lattice defined by P as

LP = {x ∈ Rm |x = Az +By − b, z ∈ Zn1, y ∈ Rn2}.

Others
Definition 1 (Strictly convex set). A set K ⊆ Rn is called a strictly convex set, if
K is a convex set and for all x, y ∈ K, λx + (1− λ)y ∈ rel.int(K) for λ ∈ (0, 1).

Definition 2 (Mixed integer lattice). Let A ∈ Qm×n1 and B ∈ Qm×n2. Then the
set

{x ∈ Rm |x = Az +By, z ∈ Zn1, y ∈ Rn2}

is said to be the mixed integer lattice generated by A and B.

Definition 3 (Lattice cone). Let L′ ⊆ Rn be a mixed integer lattice. A pointed cone
K is said to be a lattice cone w.r.t to L′ if all the extreme rays of K can be scaled
to belong to L′.

• Let conv(K) denotes the convex hull of a set K ⊆ Rn.

• Let L′ ⊆ Rm denote an arbitrary mixed integer lattice.

• For a matrix M , we denote 〈M〉 the linear subspace generated by its columns.

Preliminary Results

Mixed integer hulls of strictly convex sets
Proposition 1. Let K ⊆ Rm be a closed strictly convex set and let b ∈ Rn. Then
conv(K ∩ [L′ + b]) is closed.

Mixed integer hulls of closed convex cones
Proposition 2. Let K ⊂ Rm be a full-dimensional pointed closed convex cone.
Then conv(K ∩ L′) = K ∩ W , where W = aff(K ∩ L′). Moreover, conv(K ∩
L′) is closed if and only if K ∩W is a lattice cone w.r.t L′.

Intersection of integer hulls

Assume that L′ does not have any continuous components, that is, n2 = 0.

Proposition 3. LetKi ⊆ Rm, i = 1, 2, be closed convex sets. Assume conv(Ki∩L′)
is closed for i = 1, 2. If lin.space(K1 ∩ K2) is a rational linear subspace, then
conv

[
(K1 ∩K2) ∩ L′

]
is closed.

Remark: Unfortunately, Proposition 3 is not necessarily true for a general mixed
integer lattice in the case n2 > 0.

Main Results

1. Characterization of closedness
Theorem 1. Let P = {(x, y) ∈ Zn1 × Rn2 | Ax + By − b ∈ Lm} and let V = {Ax + By − b | (x, y) ∈
Rn1 × Rn2}. Then conv [P ∩ (Zn1 × Rn2)] is closed if and only if one of the following hold

1. 0 /∈ Lm ∩ V .

2. 0 ∈ Lm ∩ V and dim(Lm ∩ V ) ≤ 1.

3. 0 ∈ Lm ∩ V , dim(Lm ∩ V ) = 2, n2 = 0 and Lm ∩ V is a lattice cone w.r.t. LP .

4. 0 ∈ Lm ∩ V , dim(Lm ∩ V ) ≥ 2 and dim(〈B〉) ≥ dim(V )− 1.

2. Checking closedness in polynomial time
Theorem 2. There exists an algorithm that runs in polynomial time with respect to size(P) to check
whether conv(P ∩ (Zn1 × Rn2)) is closed.

3. Integer hulls of a more general class of (SOCMIP) problems. Consider the sets Pi =
{x ∈ Zn | Aix−bi ∈ Lmi}, where for all i = 1, . . . , q, we haveAi ∈ Qmi×n, bi ∈ Qmi, and Lmi ⊆ Rmi

is the Lorentz cone in Rmi.

Theorem 3. There exists an algorithm that runs in polynomial time with respect to max{size(Pi) | i =
1, . . . , q} to check whether conv(

⋂q
i=1Pi) is closed.

Proof Ideas
1. Characterization of closedness

Step 1: Simplifying the problem.

Using rationality of the data, we show that

conv(P ∩ (Zn1 × Rn2)) is closed⇔ conv((Lm ∩ V ) ∩ LP) is closed

Step 2: Analyzing the set (Lm ∩ V ).

We have two cases:

•Case 1: If 0 /∈ (Lm ∩ V ), then

– (Lm ∩ V ) is a closed strictly convex set.

⇒ By Proposition 2, we obtain that
conv((Lm ∩ V ) ∩ LP) is closed.

Example 1. Illustration of Case 1

Fig. 1
•Case 2: If 0 ∈ (Lm ∩ V ), then

–LP is a mixed integer lattice.
– (Lm ∩ V ) is a pointed closed convex cone.
– Based on dim((Lm ∩ V )), we have 3 subcases.

•Case 2a: If we have dim(Lm ∩ V ) ≤ 1, then

– The cone Lm ∩ V is just the zero vector or a ray.

⇒ Very easy case: it is always closed!

•Case 2b: If we have dim(Lm ∩ V ) = 2, rank(B) = 0, then

–LP = {Ax +By |x ∈ Zn1, y ∈ Rn2} = {Ax |x ∈ Zn1}.
– (Lm ∩ V ) is a two dimensional cone.

⇒ By Proposition 2, we only need to check if the two extreme rays of Lm ∩ V belongs to the lattice
LP .

•Case 2c: If we have dim(Lm ∩ V ) ≥ 3, then

– In order to use Proposition 2 we need the following lemma.
Lemma 4. Assume that 0 ∈ Lm ∩ V and that [A B] ∈ Qm×n. Then
1. Let dim(Lm ∩ V ) = 2. If rank(B) ≥ dim(V )− 1, then Lm ∩ V is a lattice cone w.r.t. LP .
2. Let dim(Lm ∩ V ) ≥ 3. Then rank(B) ≥ dim(V )−1 if and only if Lm ∩ V is a lattice cone

w.r.t. LP .
– Lemma 4 says that conv((Lm ∩ V ) ∩ LP) is closed when there are ‘sufficiently many con-

tinuos variables’.

Example 2.LP = Z2 × R1 (not closed)

Upper view
Fig. 2

Example 3.LP = Z1 × R2 (closed)

Lateral view Fig. 3

⇒ By Lemma 4 and Proposition 2 we only need to check if rank(B) ≥ dim(V )− 1.

2. Checking closedness in polynomial time

We only need to verify that the conditions given by Theorem 1 can be checked in polynomial
time.

Step 1 Check if 0 ∈ Lm ∩ V .

• 0 ∈ Lm ∩ V if and only if b ∈ span([A B]).

•We only need to solve a linear system with rational data.

Step 2 Compute dim(Lm ∩ V ), dim(V ) and rank(B), when 0 ∈ Lm ∩ V .

• Let ProjV denote the orthogonal projection over the linear subspace V . We need the following
lemma.

Lemma 5.
1. dim(int(Lm) ∩ V ) ≤ 1 if and only if int(Lm) ∩ V = ∅ or dim(V ) ≤ 1.
2. Lets denote a := (0, 1) ∈ Rm−1 × R. Then

int(Lm) ∩ V 6= ∅ if and only if ProjV (a) ∈ int(Lm).

– We can check whether int(Lm) ∩ V = ∅ by computing ProjV (a).
– If dim(Lm ∩ V ) ≥ 2, then dim(V ) = dim(Lm ∩ V ).
– Since B is rational, rank(B) can be computed in polynomial time.

Step 3 Verifying if Lm ∩ V is a lattice cone w.r.t. LP .

•We want to check if the two extreme rays of Lm ∩ V belongs to the lattice LP = {Ax |x ∈
Zn1} (∗)
– Find a basis {p, q} ⊆ Rm of the lattice LP , by using the Hermite Normal form algorithm.
– (∗) is satisfied if and only if the following system has rational solutions in (α, β):

m−1∑
i=1

(αpi + βqi)
2 = 1, αpm + βqm= 1. (1)

– (1) reduces to determining if a quadratic equation with integer data has rational roots.
– We need to verify if the discriminant of the quadratic equation is a perfect square.
– Checking whether an integer is a perfect square can be done in polynomial time using well-

know algorithms.

3. Integer hulls of a more general class of SOCP problems. This is a direct conse-
quence of Theorem 1 and Proposition 3.

^: dmoran@gatech.edu
©: santanu.dey@isye.gatech.edu

Source Fig. 1 http://commons.wikimedia.org/wiki/File:Secciones_c\%C3\%B3nicas.svg

Source Fig. 2,3 DAMR, SSD.


