Closedness of Mixed Integer Hulls of SOMICP

Diego A. Morán R.^{π} and Santanu S. Dey^{\odot} H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA

Summar

We show that there exists a polynomial time algorithm to check the closedness the convex hull of the feasible region of a simple class of second order conic mixed integer programming problems (SOCMIP). In the case of pure integer problem we generalize this result for the intersection of simple SOCMIP's.

Notation and Definitions

Second order mixed integer conic programming (SOCMIP)

Let $A \in \mathbb{Q}^{m \times n_1}$, $B \in \mathbb{Q}^{m \times n_2}$ and $b \in \mathbb{Q}^m$. The feasible region of a 'simple second order conic mixed integer programming problem is given by the set

$$\mathcal{P} = \{ (x, y) \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2} \mid Ax + By - b \in \mathbf{L}^m \}$$

where $\mathbf{L}^m = \{ u \in \mathbb{R}^m \mid \sqrt{\sum_{i=1}^{m-1} u_i^2} \le u_m \}$ is the Lorentz cone in \mathbb{R}^m .

- Let us define the size of the problem \mathcal{P} as $\operatorname{size}(\mathcal{P}) = \operatorname{size}(A) + \operatorname{size}(B) + \operatorname{size}(B)$
- We denote the translated mixed integer lattice defined by \mathcal{P} as

$$\mathcal{L}^{\mathcal{P}} = \{ x \in \mathbb{R}^m \, | \, x = Az + By - b, \ z \in \mathbb{Z}^{n_1}, y \in \mathbb{R}^{n_2} \}.$$

Others

Definition 1 (Strictly convex set). A set $K \subseteq \mathbb{R}^n$ is called a strictly convex set, *K* is a convex set and for all $x, y \in K$, $\lambda x + (1 - \lambda)y \in \text{rel.int}(K)$ for $\lambda \in (0, 1)$ **Definition 2** (Mixed integer lattice). Let $A \in \mathbb{Q}^{m \times n_1}$ and $B \in \mathbb{Q}^{m \times n_2}$. Then t set

$$\{x \in \mathbb{R}^m \mid x = Az + By, \ z \in \mathbb{Z}^{n_1}, y \in \mathbb{R}^{n_2}\}$$

is said to be the mixed integer lattice generated by A and B.

Definition 3 (Lattice cone). Let $\mathcal{L}' \subseteq \mathbb{R}^n$ be a mixed integer lattice. A pointed con K is said to be a lattice cone w.r.t to \mathcal{L}' if all the extreme rays of K can be scale to belong to \mathcal{L}' .

- Let $\operatorname{conv}(K)$ denotes the convex hull of a set $K \subseteq \mathbb{R}^n$.
- Let $\mathcal{L}' \subseteq \mathbb{R}^m$ denote an arbitrary mixed integer lattice.
- For a matrix M, we denote $\langle M \rangle$ the linear subspace generated by its columns.

Preliminary Result

Mixed integer hulls of strictly convex sets

Proposition 1. Let $K \subseteq \mathbb{R}^m$ be a closed strictly convex set and let $b \in \mathbb{R}^n$. The $\operatorname{conv}(K \cap [\mathcal{L}' + b])$ is closed.

Mixed integer hulls of closed convex cones

Proposition 2. Let $K \subset \mathbb{R}^m$ be a full-dimensional pointed closed convex con Then $\overline{\operatorname{conv}}(K \cap \mathcal{L}') = K \cap W$, where $W = \operatorname{aff}(K \cap \mathcal{L}')$. Moreover, $\operatorname{conv}(K)$ \mathcal{L}') is closed if and only if $K \cap W$ is a lattice cone w.r.t \mathcal{L}' .

Intersection of integer hulls

Assume that \mathcal{L}' does not have any continuous components, that is, $n_2 = 0$.

Proposition 3. Let $K_i \subseteq \mathbb{R}^m$, i = 1, 2, be closed convex sets. Assume conv $(K_i \cap \mathcal{L})$ is closed for i = 1, 2. If lin.space $(K_1 \cap K_2)$ is a rational linear subspace, the conv $[(K_1 \cap K_2) \cap \mathcal{L}']$ is closed.

Remark: Unfortunately, Proposition 3 is not necessarily true for a general mixe integer lattice in the case $n_2 > 0$.

1. Characterization of closedness Theorem 1. Let $\mathcal{P} = \{(x, y) \in \mathbb{Z}^{n_1} \times \mathbb{R}^{n_2} Ax + By - b \in \mathbf{L}^m\}$ and $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2}\}$. Then conv $[\mathcal{P} \cap (\mathbb{Z}^{n_1} \times \mathbb{R}^{n_2})]$ is closed if and only if one of
1. $0 \notin \mathbf{L}^m \cap V$. 2. $0 \in \mathbf{L}^m \cap V$ and $\dim(\mathbf{L}^m \cap V) \leq 1$. 3. $0 \in \mathbf{L}^m \cap V$, $\dim(\mathbf{L}^m \cap V) = 2$, $n_2 = 0$ and $\mathbf{L}^m \cap V$ is a lattice cond 4. $0 \in \mathbf{L}^m \cap V$, $\dim(\mathbf{L}^m \cap V) \geq 2$ and $\dim(\langle B \rangle) \geq \dim(V) - 1$.
2. Checking closedness in polynomial time Theorem 2. There exists an algorithm that runs in polynomial time w whether $conv(\mathcal{P} \cap (\mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}))$ is closed.
3. Integer hulls of a more general class of (SOCMIP) prob $\{x \in \mathbb{Z}^n \mid A_i x - b_i \in \mathbb{L}^{m_i}\}$, where for all $i = 1,, q$, we have $A_i \in \mathbb{Q}^d$ is the Lorentz cone in \mathbb{R}^{m_i} .
Theorem 3. There exists an algorithm that runs in polynomial time with $1, \ldots, q$ to check whether $conv(\bigcap_{i=1}^{q} \mathcal{P}_i)$ is closed.
1. Characterization of closedness
Step 1: Simplifying the problem. Using rationality of the data, we show that
$\operatorname{conv}(\mathcal{P} \cap (\mathbb{Z}^{n_1} \times \mathbb{R}^{n_2}))$ is closed $\Leftrightarrow \operatorname{conv}((\mathbf{L}^m \cap V) \cap V)$
Step 2: Analyzing the set $(\mathbf{L}^m \cap V)$.
We have two cases:
• Case 1: If $0 \notin (\mathbf{L}^m \cap V)$, then $-(\mathbf{L}^m \cap V)$ is a closed strictly convex set. Example 1. Illustration
$\Rightarrow \text{ By Proposition 2, we obtain that} conv((\mathbf{L}^m \cap V) \cap \mathcal{L}^{\mathcal{P}}) \text{ is closed.} \qquad \qquad$
 Case 2: If 0 ∈ (L^m ∩ V), then - L^P is a mixed integer lattice. - (L^m ∩ V) is a pointed closed convex cone.
 Based on dim((L^m ∩ V)), we have 3 subcases. Case 2a: If we have dim(L^m ∩ V) ≤ 1, then The cone L^m ∩ V is just the zero vector or a ray.
\Rightarrow Very easy case: it is always closed!
• Case 2b: If we have $\dim(\mathbf{L}^m \cap V) = 2$, $\operatorname{rank}(B) = 0$, then $-\mathcal{L}^{\mathcal{P}} = \{Ax + By \mid x \in \mathbb{Z}^{n_1}, y \in \mathbb{R}^{n_2}\} = \{Ax \mid x \in \mathbb{Z}^{n_1}\}.$ $-(\mathbf{L}^m \cap V)$ is a two dimensional cone.
\Rightarrow By Proposition 2, we only need to check if the two extreme rays o

Source Fig. 1 http://commons.wikimedia.org/wiki/File:Secciones_c\%C3\%B3nicas.svg Source Fig. 2,3 DAMR, SSD.

Main Results

l let $V = \{Ax + By - b \, | \, (x, y) \in$ of the following hold

one w.r.t. $\mathcal{L}^{\mathcal{P}}$.

with respect to size(\mathcal{P}) to check

oblems. Consider the sets $\mathcal{P}_i =$ $\mathbb{Q}^{m_i \times n}, b_i \in \mathbb{Q}^{m_i}$, and $\mathbf{L}^{m_i} \subseteq \mathbb{R}^{m_i}$

with respect to $\max\{\operatorname{size}(\mathcal{P}_i) \mid i = i\}$

Proof Ideas

 $\cap \mathcal{L}^{\mathcal{P}}$) is closed

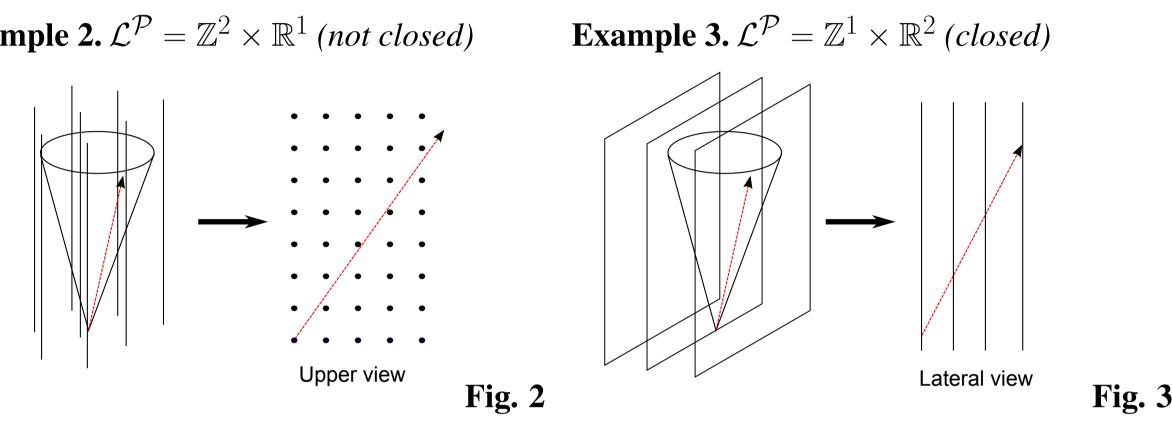
ration of Case 1

Fig. 1

of $\mathbf{L}^m \cap V$ belongs to the lattice

- Case 2c: If we have $\dim(\mathbf{L}^m \cap V) \ge 3$, then – In order to use Proposition 2 we need the following lemma. **Lemma 4.** Assume that $0 \in \mathbf{L}^m \cap V$ and that $[A B] \in \mathbb{Q}^{m \times n}$. Then w.r.t. $\mathcal{L}^{\mathcal{P}}$.
- tinuos variables'.

Example 2. $\mathcal{L}^{\mathcal{P}} = \mathbb{Z}^2 \times \mathbb{R}^1$ (not closed)



 \Rightarrow By Lemma 4 and Proposition 2 we only need to check if rank $(B) \ge \dim(V) - 1$.

2. Checking closedness in polynomial time

We only need to verify that the conditions given by Theorem 1 can be checked in polynomial time.

Step 1 Check if $0 \in \mathbf{L}^m \cap V$.

- $0 \in \mathbf{L}^m \cap V$ if and only if $b \in \operatorname{span}([A B])$.
- We only need to solve a linear system with rational data.

Step 2 Compute $\dim(\mathbf{L}^m \cap V)$, $\dim(V)$ and $\operatorname{rank}(B)$, when $0 \in \mathbf{L}^m \cap V$.

lemma

Lemma 5.

1. $\dim(\operatorname{int}(\mathbf{L}^m) \cap V) \leq 1$ if and only if $\operatorname{int}(\mathbf{L}^m) \cap V = \emptyset$ or $\dim(V) \leq 1$. 2. Lets denote $a := (0, 1) \in \mathbb{R}^{m-1} \times \mathbb{R}$. Then

 $\operatorname{int}(\mathbf{L}^m) \cap V \neq \emptyset$ if and only if $\operatorname{Proj}_V(a) \in \operatorname{int}(\mathbf{L}^m)$.

- We can check whether $int(\mathbf{L}^m) \cap V = \emptyset$ by computing $\operatorname{Proj}_V(a)$.

- If $\dim(\mathbf{L}^m \cap V) \ge 2$, then $\dim(V) = \dim(\mathbf{L}^m \cap V)$.

- Since B is rational, rank(B) can be computed in polynomial time.

Step 3 Verifying if $\mathbf{L}^m \cap V$ is a lattice cone w.r.t. $\mathcal{L}^{\mathcal{P}}$.

- \mathbb{Z}^{n_1} (*)

$$\sum_{i=1}^{m-1} (\alpha p_i -$$

- know algorithms.

3. Integer hulls of a more general class of SOCP problems. This is a direct consequence of Theorem 1 and Proposition 3.

The H. Milton Stewart School of Industrial and Systems Engineering

1. Let $\dim(\mathbf{L}^m \cap V) = 2$. If $\operatorname{rank}(B) \ge \dim(V) - 1$, then $\mathbf{L}^m \cap V$ is a lattice cone w.r.t. $\mathcal{L}^{\mathcal{P}}$. 2. Let $\dim(\mathbf{L}^m \cap V) \ge 3$. Then $\operatorname{rank}(B) \ge \dim(V) - 1$ if and only if $\mathbf{L}^m \cap V$ is a lattice cone

- Lemma 4 says that $conv((\mathbf{L}^m \cap V) \cap \mathcal{L}^{\mathcal{P}})$ is closed when there are 'sufficiently many con-

• Let Proj_V denote the orthogonal projection over the linear subspace V. We need the following

• We want to check if the two extreme rays of $\mathbf{L}^m \cap V$ belongs to the lattice $\mathcal{L}^{\mathcal{P}} = \{Ax \mid x \in \mathcal{L}^{\mathcal{P}} \}$

- Find a basis $\{p,q\} \subseteq \mathbb{R}^m$ of the lattice $\mathcal{L}^{\mathcal{P}}$, by using the Hermite Normal form algorithm. -(*) is satisfied if and only if the following system has rational solutions in (α, β) :

> $+\beta q_i)^2 = 1, \quad \alpha p_m + \beta q_m = 1.$ (1)

-(1) reduces to determining if a quadratic equation with integer data has rational roots. – We need to verify if the discriminant of the quadratic equation is a perfect square. - Checking whether an integer is a perfect square can be done in polynomial time using well-