Proposition 1. We show that there exists a polynomial time algorithm to check the closedness of the convex hull of a simple convex set.

Proposition 2. Second order mixed integer conic programming (SOCMIP) is said to be a lattice cone w.r.t to \(P \).

Definition 2. For a matrix \((A, b, z) \in \mathbb{Z}^{m \times (n+m)} \), where for all \(i \), \(a_i \in \mathbb{Q}^{m \times n+k} \), \(b_i \in \mathbb{Q}^m \), and \(z_i \in \mathbb{R}^{m \times n+m} \), the Lorentz cone is the Lorentz cone in \(\mathbb{R}^m \).

Theorem 1. Let \(P = \{ (x,y) \in \mathbb{Z}^{m \times (n+m)} \mid Ax+By-b \in \mathbb{Z}^{m} \} \) and let \(V = \{ (Ax+By-b) \mid (x,y) \in \mathbb{R}^{m \times n+m} \} \). Then, \(\text{conv}(P \cap \mathbb{Z}^{m \times (n+m)}) \) is closed if and only if one of the following hold:

1. \(0 \not\in \mathbb{L}^{(m \times n+m)} \).
2. \(0 \in \mathbb{L}^{(m \times n+m)} \) and \(\dim(\mathbb{L}^{(m \times n+m)}) \leq 1 \).
3. \(0 \in \mathbb{L}^{(m \times n+m)} \) and \(\dim(\mathbb{L}^{(m \times n+m)}) \geq 2 \).

2. Checking closedness in polynomial time

Theorem 2. There exists an algorithm that runs in polynomial time with respect to \(\mathbb{L}^{(m \times n+m)} \) to check whether \(\text{conv}(\mathbb{L}^{(m \times n+m)}) \) is closed.

3. Integer hulls of a more general class of (SOCMIP) problems. Consider the sets \(P = \{ (x,y) \in \mathbb{Z}^{m \times (n+m)} \mid Ax+By-b \in \mathbb{Z}^{m} \} \), where for all \(i \), \(a_i \in \mathbb{Q}^{m \times n+k} \), \(b_i \in \mathbb{Q}^m \), and \(z_i \in \mathbb{R}^{m \times n+m} \), the Lorentz cone is the Lorentz cone in \(\mathbb{R}^m \).

Theorem 3. There exists an algorithm that runs in polynomial time with respect to \(\text{max}(|P|) \) to check whether \(\text{conv}(\mathbb{L}^{(m \times n+m)}) \) is closed.

Proof Ideas

1. Characterization of closedness

Step 1: Simplifying the problem.

Using rationality of the data, we show that \(\text{conv}(\mathbb{L}^{(m \times n+m)} \cap V) \) is closed if and only if \(\text{dim}(\mathbb{L}^{(m \times n+m)} \cap V) \) is closed.

Step 2: Analyzing the set \(\mathbb{L}^{(m \times n+m)} \cap V \).

We have two cases:

- **Case 1:** If \(0 \not\in \mathbb{L}^{(m \times n+m)} \cap V \), then \(\mathbb{L}^{(m \times n+m)} \cap V \) is a closed strictly convex set.

- **Case 2:** If \(0 \in \mathbb{L}^{(m \times n+m)} \cap V \), then \(\mathbb{L}^{(m \times n+m)} \cap V \) is a mixed integer lattice.

- **Case 2a:** If \(0 \in \mathbb{L}^{(m \times n+m)} \cap V \) and \(\mathbb{L}^{(m \times n+m)} \cap V \) is a closed convex cone.

- **Case 2b:** If \(0 \in \mathbb{L}^{(m \times n+m)} \cap V \) and \(\mathbb{L}^{(m \times n+m)} \cap V \) is a two-dimensional cone.

By Proposition 2, we only need to check if the two extreme rays of \(\mathbb{L}^{(m \times n+m)} \cap V \) belong to the lattice \(\mathbb{L}^{(m \times n+m)} \).

Notation and Definitions.

Second order mixed integer conic programming (SOCMIP).

Let \(A \in \mathbb{Q}^{m \times n} \), \(B \in \mathbb{Q}^{m \times m} \) and \(b \in \mathbb{Q}^m \). The feasible region of a 'simple' second order mixed integer conic programming problem is given by the set

\[P = \{ (x,y) \in \mathbb{Z}^{m \times (n+m)} \mid Ax+By-b \in \mathbb{L}^{m} \} \]

where \(\mathbb{L}^m = \{ v \in \mathbb{R}^m \mid \sum_{i=1}^m v_i^2 \leq u_0 \} \) is the Lorentz cone in \(\mathbb{R}^m \).

- **Definition 1:** Strictly convex sets. A set \(K \subseteq \mathbb{R}^d \) is called a strictly convex set, if for all \(K \) and for all \(x, y \in K, x \neq y \), \(\forall \alpha, \beta \in \mathbb{R} \), \(\alpha + \beta = 1 \), \(\alpha, \beta \geq 0 \), \(\alpha x + \beta y \not\in K \).

- **Definition 2:** Mixed integer lattice. Let \(A \in \mathbb{Q}^{m \times n} \) and \(B \in \mathbb{Q}^{m \times m} \). Then the set \(\{ x \in \mathbb{R}^m \mid Ax+By-b \in \mathbb{Z}^m \} \) is said to be the mixed integer lattice generated by \(P \).

- **Definition 3:** Lattice cone. \(\mathbb{L}^m \subset \mathbb{R}^m \) is a mixed integer lattice. A pointed cone \(K \subseteq \mathbb{R}^m \) is said to be a lattice cone if \(\mathbb{L}^m = \text{conv}(K) \).

- **Definition 4:** For a matrix \(M \), we denote \(M \) the linear subspace generated by its columns.

Preliminary Results

Mixed integer hulls of strictly convex sets

Proposition 1. Let \(K \subseteq \mathbb{R}^d \) be a closed strictly convex set and let \(b \in \mathbb{R}^n \). Then \(\text{conv}(K \cap \mathbb{Z}^d - b) \) is closed.

Mixed integer hulls of closed convex cones

Proposition 2. Let \(K \subseteq \mathbb{R}^d \) be a full-dimensional pointed closed convex cone. Then \(\text{conv}(K \cap \mathbb{Z}^d) - K \cap \mathbb{Z}^d \) is closed if and only if \(K \cap \mathbb{W}^d \) is a lattice cone with \(\mathbb{L}^d \).

Intersection of integer hulls

Assume that \(L \) does not have any continuous components, that is, \(\mathbb{L} = \mathbb{Z}^m \).

Proposition 3. Let \(K \subseteq \mathbb{R}^d \), \(i = 1, 2, \) be closed convex sets. Assume \(\text{conv}(K_i \cap \mathbb{L}^d) \) is closed for \(i = 1, 2 \). \(\text{dim}(K_1 \cap K_2) = r \) is a rational linear subspace, then \(\text{conv}(K_1 \cap K_2 \cap \mathbb{L}^d) \) is closed.

Remark: Unfortunately, Proposition 3 is not necessarily true for a general mixed integer lattice in the case \(n = 2 \).