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3. Instance data

CSLP with sequence dependent 

setups and no setup carry-over

Compare strategies

Comparing different ’treatments’ (formulations or settings) applied to the 

same instance requires a ’paired’ test statistic.

The paired t-test can not be used because the differences between 

treatments are not normal distributed. Also it is hard to handle differences 

in MIP gap between treatments in the same score.

The non-parametric Wilcoxon Signed Rank test is used instead. Instances 

with a difference in MIP gap get a fixed maximal time penalty plus the 

difference in MIP gap. This guarantees that these instances always get 

the highest ranks.

Example:

The probability of a certain sum of negative signed ranks occurring by 

incident can be computed, and so the result can be found statistically 

significant or not.

1. Formulation

The inventory in each period is represented as the difference 

between total production and demand up to that period. This 

can be represented by a new inventory variable H in the 

objective and change the positive inventory constraint (2) to a 

standard  inventory balance constraint.

The summation of setup links out of a product to indicate if a 

product is produced in a period, as in constraints (4) and (9) 

can be replaced by one continuous production variable P 

with an upper bound of 1.

This variable is also placed with an equality sign as the RHS 

of constraints (4) and (5) to give the regular in and out 

degree constraints.
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Remove the Miller-Tucker-Zemlin subcycle elimination 

constraints (7) and replace by the formulation proposed by 

Gavish and Graves.

Limit the maximum sequence to n if the setup link is part of the production cycle, 0 else

The difference in sequence for the link in and out should be 1 if this product is produced
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The first produce constraint forces at least one full setup to be made before the first non-zero 

demand period. Improving the relaxation, that can be poor because of the ’big M’ constraint (4).

The dummy produce constraint forces the clean setup state to be ’produced’ if any other product 

is produced. Cleaning the machine is expensive and was previously only forced in because of 

the subcycle elimination constraints.
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Include specific subcycle elimination constraints that remove subcycles that are know to be 

cheap. This improves the relaxation and cuts part of the search tree.

A simple Branch & Cut algorithm is used to solve the TSP problem provided by the setup cost 

matrix. The subcycles that are added to solve this problem iteratively are saved and added to the 

CLSP problem.

The following explicitly subcycle elimination constraints are then added to the formulation for 

these found cycles:

This includes new continuous variables W that indicates if any product in the subgroup is 

produced in that period.
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Force at least one link to be used out of every subcycle group.

Find if any product in this subcycle is produced. Only for these groups a flow out should be forced

Formulation with minimal number of variables and constraints.

Containing a total of (n²+3n+1)m variables, of which (n²+n)m are binary.

Excluding the objective and variable bounds, there are (n²+4n+3)m 

constraints.

The objective function minimizes the inventory holding cost and setup cost

The difference between the total production and demand should be possitive in every period

The total production time and setup time should be less than the capacity, unless overtime is used
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If any production takes place, this should be part of the setup cycle for that period

Each product can only be produced once in each period, so can only have one successor in the setup cycle

As part of a cycle, there should be 1 successor and 1 predecessor for each node. For nodes that are not produced they can not be part of 

the cycle

Classic Miller-Tuckler-Zemlin subcycle elimination constraint. Assigns a unique sequence number to each setup in the cycle

Bounds on the variables

2. Solvers and solver settings

In frequent comparative tests on mixed integer programming problems by H. Mittelmann Gurobi 

has consequently beaten CPLEX.

Comparative studies on the different problem classes of this problem gave large differences 

between the performance of the Gurobi 4.0 and CPLEX 12.2 solvers, but not always in the 

advantage of Gurobi.

For problems with short time horizon and many products CPLEX clearly outperforms the Gurobi 

solver. But for longer time horizon problems, the CPLEX wasn’t able to be competitive against 

Gurobi.
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Changing the solver setting for Gurobi and CPLEX from their default settings also slightly 

improved the performance.

Very aggressive generation of cuts in both CPLEX and Gurobi works best for the most difficult 

problem classes, while a slightly more conservative cuts strategy works better for the problems 

that are know to be easier.

CPLEX by default does a breadth-first search, changing this to ’best-estimate search’ gives 

significantly better results for the easier problems, but convergence is much lower for hard 

problems.

Changing the Gurobi search strategy to ’favor proving optimality’ works rather surprisingly well 

for hard problems where optimality can not be proved for many instances. 

Problem Description
I have created an advanced random instance generator that tries to mimic the types of problems found in 

real applications and also offers greater possibilities to explore the impact the data has on the difficulty of 

the problem.

This case is inspired by my past working experience in a canned food factory in the Netherlands. I have 

however tried to generalize it as much as possible, in order not to over fit the solution method to the 

specific situation within that factory.

In this variation of the capacitated lot sizing problem, the setup costs are dependent on the sequence in 

which the products are produced. It also includes setup times that are linearly dependent on the setup 

cost.

Compared to all other studies in the field (most notably B. Almada-Lobo et al. (2007) and Gupta and 

Magnusson (2005) )  the problem without the extremely complex setup carry-over has not yet been 

researched to the best of my knowledge.

The problem without setup-carry-over between the periods is however of practical concern in many cases 

where perishable products are produced in a non-continuous environment. In these situations it is 

essential to clean the machine at the end of each period and thus the last produced product of the 

previous period is no longer of consequence at the start of the next period.

The next part of my research will focus on relaxation techniques for this 

problem and finding Pareto efficient methods.

An improvement heuristic will be developed later based on variable 

neighborhood search by solving the problem with the binary solution for 

most periods fixed.

The final goal of this research is to solve the rolling horizon stochastic 

version of this problem where demand gets increasingly more unknow in 

later time periods.

So far the effects of the data on the complexity of the problem, is only represented by the 

influence of the size of the instance.

To analyze the effects of the data further, a regression model is created where the total run-time 

of the instance is estimated by using characteristics of the solution.

In order to normalize the residuals, the dependent variable is the logarithm of the total elapsed 

time to solve the model.

The model uses the following independent variables:
The cleaning fraction, which is the percentage of setup cost related to cleaning the machine at the end of the day

The utilization is the average percentage of available time used for setups or production

The setup duration is the average number of periods between setups of the same product

There are 3 types of setup cost structures; totally random, product groups, gradual increase

The following table shows the results of this regression for 90 instances in the 10x12 instance 

class. The resulting model has an R square of 0.481 (adjusted 0.449)

The sensitivity of the solution to the data is also important. Many parameter values are not 

exactly know in real situations.

The sensitivity can be measured by its effect on the total objective value, but also on the effect 

on the matrix of binary produce variables.

Currently I am investigating the effects of small changes in the inventory cost, setup cost, and 

setup time, but this work is not yet finished at this moment.

The gradual steps of reformulating this very hard research problem have resulted in an 

extreme improvement of the performance in the commercial Gurobi solver

Adding simple valid inequalities allows problems of up to 40 products, a practical size 

problem for the canned food industry considered, to be solved to optimality within one 

hour

Using the CPLEX solver for short time horizon problems further improves the 

performance of these problems with up to 50% while Gurobi outperforms on the longer 

time horizon problems

This research shows that detailed analysis of the formulation can result in practical size 

problems being solved to optimality with out of the box commercial solvers

Detailed analysis of the data gives better insight in what makes a problem instance hard, 

and this insight can be used to use certain solver settings for certain hard or easy 

problems.
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