On the Structure of Reduced Kernel Lattice Bases

Karen Aardal Frederik von Heymann Andrea Lodi Laurence Wolsey

Consider the integer linear problem

$$\max\{\boldsymbol{c}\boldsymbol{x}\mid A\boldsymbol{x}=\boldsymbol{b},\boldsymbol{x}\in\mathbb{Z}_+^n\}$$

where $A \in \mathbb{Z}^{m \times n}$ with HNF(A) = [I, 0].

Reformulation:

$$x = x^0 + Q\lambda$$
, where

 $\mathbf{x}^0 \in \mathbb{Z}^n$ satisfies $A\mathbf{x}^0 = \mathbf{b}$, $\mathbf{\lambda} \in \mathbb{Z}^{n-m}$ and $Q \in \mathbb{Z}^{n \times n - m}$ is an LLL-reduced Basis of $\ker_{\mathbb{Z}}(A)$.

Why do we do this?

- *Q* has some structure we can use for branching;
- (rounding) cuts are only limited by feasible points.

What does Q look like?

Observation: There is some dense interaction in some variables (whose number seems very stable and almost independent of the total number of variables), and otherwise substitutions.

Why is this happening?

Assumptions:

- $A = \mathbf{a} = (a_1, ..., a_n);$
- $a_1, ..., a_n \in \{l, l+1, ..., u\}$ with 0 < l < u;
- $\ker_{\mathbb{Z}}(A)$ is given by a basis where $b_1\mathbb{Z}+\cdots+b_k\mathbb{Z}=\ker_{\mathbb{Z}}(a)\cap(\mathbb{Z}^{k+1}\times 0^{n-k-1}).$

Theorem: With increasing k, the probability that b_k and b_{k+1} are switched during the LLL-reduction goes to zero.

Tools:

- $Pr(\gcd(a_1,\ldots,a_k)>1)\lesssim \frac{u}{2^{k-1}}$.
- $\bullet \|\mathbf{b}_{k}^{*}\|^{2} = \frac{\sum_{i=1}^{k+1} a_{i}^{2}}{\sum_{i=1}^{k} a_{i}^{2}}.$
- $\bullet \ 1 \Theta(\frac{1}{k}) \le \mathbb{E}\left[\|\boldsymbol{b}_{k+1}^*\|^2 / \|\boldsymbol{b}_k^*\|^2\right] \le 1 + \Theta(\frac{1}{k}).$
- $Pr(\|b_{k+1}^*\|^2/\|b_k^*\|^2 < y) \to 0$ when $y \in (1/4, 1)$.

Conclusion: $\|b_{k+1}^* + \mu_{k+1,k}b_k^*\|^2 \ge y \|b_k^*\|^2$ with high probability, which is the ordering criterion of LLL.

# var	l, u = 100, 1000			<i>l</i> , <i>u</i> = 15000, 150000		
	avg # dense	min # dense	max # dense	avg # dense	min # dense	max # dense
50	22.4	18	28	28.6	26	32
100	24.1	19	33	30.2	26	36
200	26.7	20	40	31.1	27	44

