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Summary

The integer L-shaped method is a well-known approach to two-stage stochastic programs having
binary first-stage decision variables and mixed-integer recourse. It basically relies on the genera-
tion of optimality cuts to approximate the recourse function. However, these cuts may be weak as
they only use local information of the solution to be cut off,and therefore many of them may be
needed to solve a given problem. In this work, we attempt to generate optimality cuts based on
the information provided by all feasible solutions visitedso far at a given step of the method. Our
hope is that this modification yields a reduction in the number of cuts needed and in the overall
computation time.

Introduction
Consider a two-stage stochastic integer programming problem of the form

min cJx ` Qpxq

s.t. Ax “ b

x P X Ď B :“ t0, 1un,

whereQpxq “ EξrminytqJy : Wy “ h ´ Tx, y P Y Ď R
m
`us andξ “ pq, T, hq.

Assumptions:
- Y enforces some integrality requirements ony.
- Given a binary first stage decision vectorx, the functionQpxq is computable fromx.
- There exists a finite valueL satisfyingL ď minxtQpxq : Ax “ b, x P Bu.

To solve this class of problems, the integer L-shaped method[1] solves a master problem of the
form

min cJx ` θ

s.t. Ax “ b

Dkx ě dk k “ 1, . . . , s (1)
Ekx ` θ ě ek k “ 1, . . . , t (2)
x ě 0, θ P R.

- Feasibility cuts (1) are used to ensureQpxq P R.
- Optimality cuts (2) are used to expressθ as an appropriate approximation ofQpxq.
- These cuts are generated dynamically through the procedure.

Let r “ 1, . . . , R index the feasible solutions. Letxi “ 1, i P Sr, andxi “ 0, i R Sr, be ther-th
feasible solution, andθr the corresponding expected second-stage value. In [1], theoptimality
cut is defined as

θ ě pθr ´ Lq

¨

˝

ÿ

iPSr

xi ´
ÿ

iRSr

xi

˛

‚´ pθr ´ Lqp|Sr| ´ 1q ` L. (3)

Note that (3) is defined in terms of ther-th feasible solutionxr only and its expected second-stage
valueθr. Moreover, the right-hand-side takes the valueθr at this particular point, and a value less
or equal thanL otherwise.

New optimality cuts
At a given stage of the integer L-shaped method, letV Ď t1, . . . , Ru be the set of feasible
solutions visited so far. We would like to design an optimality cut of the form

θ ě αJx ` β (4)

that takes into account the available information providedby all the solutions inV . To that end,
consider the cut generating problem

pCGP q min
α,β,η

η

s.t. θr ě αJxr ` β @r P V (5)
L ě αJxr ` β @r R V (6)

η ě θr ´ pαJxr ` βq @r P V (7)

η ě L ´ pαJxr ` βq @r R V. (8)

- Constraints (5) and (6) ensure thatαJx ` β is a lower bound onQpxq.
- The objective is to minimize the maximum difference between the best current lower bound and
the lower bound provided by (4) among all solutions.
- Given thatV is explicitly known, (5) and (7) pose no difficulty.
- However, (6) and (8) may involve exponentially many constraints which can be equivalently
written as

L ě maxtαJxr ` β : r R V u “ maxtαJx ` β : x P convpBzXV qu

L ´ η ď mintαJxr ` β : r R V u “ mintαJx ` β : x P convpBzXV qu,

whereXV :“ txr P B : r P V u. Therefore, the tractability ofpCGP q depends upon the
tractability of convpBzXV q. Fortunately, we prove the following result which allows torecast
pCGP q as an LP.

Theorem 1 Given explicit V , convpBzXV q admits an extended formulation having Opn|V |q
variables and constraints.

A key step in proving Theorem 1 is the following proposition which is a two-sided extension of
the superincreasing coefficient knapsack studied in [2].

Proposition 1 Given integers a ď b, convptx P B : a ď
řn

i“1
2
i´1xi ď buq has a complete

linear description having Opnq constraints.

Notice that conceptually,L can be replaced inpCGP q by any lower bounding functionLpxq such
thatLpxq ď Qpxq, and in such case the cuts generated are expected to be stronger than whenL is
constant. Unfortunately, in this casepCGP q becomes intractable in general, but it can be casted
as an IP problem whenL is convex and piecewise affine. Also, feasibility cuts can bederived
from separation overconvpBzXV q.
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Experiments

Consider the stochastic semi-continuous transportation problem depicted below.

i
xi ∈ {0} ∪ {li} ykij ∈ {0} ∪ [hij ,∞) dkj > 0

N

j

M

ti ≥ 0

The above problem can be formulated with the aid of binary variables.
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fJx `
ÿ

k

πkq
kJyk :

ř

i y
k
ij ě dkj @j, k

ř

j y
k
ij ď ti ` lixi @i, k

hijz
k
ij ď ykij ď pti ` liqz

k
ij @i, j, k

xi P t0, 1u @i

zkij P t0, 1u @i, j, k.
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We compare the standard integer L-shaped method with an implementation which also includes
the new optimality cuts.

L-shaped Combined L-shaped
Total Time NodesTotal Time Partial Time Nodes

1 173.77 1911 31.78 23 474
2 106.3 1344 195.93 64.29 942
3 220.49 2024 909.16 173.17 2099
4 189.91 1822 95.7 39.16 774
5 166.27 1560 48.75 41.95 898
6 344.03 3143 197.61 117.37 1936
7 612.09 5811 482.33 128.54 2666
8 350.33 3465 257.99 190.66 3016
9 340.67 2996 107.87 84.96 1588

10 286.37 2680 1806.09 124.68 2173
Avg. 279.02 2675.60 413.32 98.78 1656.60
Avg* 278.21 2675.11 258.57 95.90 1599.22

Table 1:|N | “ 20, |M | “ 20, |K| “ 30. Avg* excludes instance 10.

L-shaped Combined L-shaped
Total Time NodesTotal Time Partial Time Nodes

1 511.62 1800 25.83 24.51 350
2 454.44 1688 340.6 193.4 853
3 1091.75 2717 668.05 390.06 2141
4 717.47 2117 288.06 217.06 1224
5 556.41 1666 117.94 112.14 668
6 1536.21 3882 717.2 397.4 2386
7 1800.56 5224 1802.55 575.31 3462
8 1332.09 3639 480.77 404.58 2398
9 1638.35 4360 1022.47 633.31 3228

10 1434.48 3590 1801.36 499.58 2965
Avg. 1107.34 3068.30 726.48 344.74 1967.50
Avg* 870.93 2429.89 406.77 263.61 1472.00

Table 2:|N | “ 20, |M | “ 20, |K| “ 100. Avg* excludes instances 7 and 10.
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