Computing Bounds and Solutions to the Asymmetric Traveling Salesman Problem with Approximate Linear Programming

Michael Poremba Alejandro Toriello Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California {poremba, toriello} *at* usc *dot* edu

Background

Problem Statement

- We consider the asymmetric *traveling salesman problem* (TSP) over cities in where the cost from city *i* to city *j* is $c_{i,j} \in \mathbb{R}$ for i, j = 0, ..., |N| with $i \neq j$.
- In previous work⁽¹⁾, the second author:
- applied approximate linear programming (ALP) techniques to the TSP's dy program (DP) formulation
- found a nested family of polyhedral lower bounds, solvable in polynom
- In this poster, we present:
- two methods for solving these ALP formulations to compute TSP lower
- a branch-and-bound heuristic which uses solutions to the ALP to generate tours via a *price-directed* policy

Lower Bound Framework

Dual of the Dynamic Programming Formulation:

$$\begin{array}{ll} \max \ y_{0,N} \\ \text{s.t.} \ y_{0,N} - y_{i,N\setminus i} \leq c_{0i}, & \forall \ i \in N \\ y_{i,U\cup j} - y_{j,U} \leq c_{ij}, & \forall \ i \in N, \ j \in N \setminus i, \ U \subseteq N \setminus \{i,j\} \\ y_{i,\emptyset} \leq c_{i0}, & \forall \ i \in N \\ y_{0,N} \in \mathbb{R}; & y_{i,U} \in \mathbb{R}, \forall \ i \in N, U \subseteq N \setminus i. \end{array}$$

Approximate Cost-to-Go:

$$y_{i,U} = \pi_{i,\emptyset} + \sum_{k \in U} \pi_{i,k} + \sum_{\substack{W \subseteq U \\ |W| \ge n-t}} \lambda_{i,W} + \sum_{\substack{W \subseteq N \setminus (U \cup i) \\ |W| \ge n-t}} \mu_{i,W} \quad \text{for } t \ge 1$$

Approximate Linear Programming Formulation:

$$\begin{array}{l} \max \ y_{0,N} \\ \text{s.t.} \ y_{0,N} - \pi_{i,\emptyset} - \sum_{k \in N \setminus i} \pi_{i,k} \leq c_{0i}, \quad \forall \ i \in N \\ \pi_{i,\emptyset} - \pi_{j,\emptyset} + \pi_{i,j} + \sum_{k \in U} (\pi_{i,k} - \pi_{j,k}) \leq c_{ij}, \\ \quad \forall \ i \in N, j \in N \setminus i, \ U \subseteq N \setminus \{i,j\} \\ \pi_{i,\emptyset} \leq c_{i0}, \quad \forall \ i \in N \\ y_{0,N} \in \mathbb{R}; \quad \pi_{i,\emptyset} \in \mathbb{R} \ \forall \ i \in N, \ \pi_{i,j} \in \mathbb{R} \ \forall \ i \in N, j \in N \setminus i \end{array}$$

Note: The above formulation is for the case where t = 0. It becomes slightly complex if t > 0. This poster encompasses results where t = 0 or t = 1.

References

(1) Toriello, A. Optimal Toll Design: A Lower Bound Framework for the Asy Traveling Salesman Problem. Preprint available at www – bcf.usc.edu / toriello / tsp_bound.pdf, 2012.

Computing Bounds

	Constraint Generation Algorithm
$N \cup 0,$	Method: This approach solves the formulation directly, using a constrain to manage the exponential number of constraints.
<i>mamic</i> nial time	Computational Challenges: In previous work of the second author, he outlines a polynomi routine for our formulation. Computationally, the main challer managing the number of constraints to add/remove each itera
t bounds ate TSP	Results: % Below Opt. Lower Bound Comparison
	1.5% 1.0%
(1-)	0.5%
(1a) (1b) (1c) (1d) (1e)	br17 $ftv33$ $ftv35$ $ftv38$ $ftv44RED PLOT = bound for the linear relaxation of the arc-based forBLUE PLOT = bound for our ALP where t = 1Note: For the ftv35 and ftv38 instances, the bound improvement$
	Primal-Dual Algorithm
0 (2)	Method: This method takes any given feasible solution and attempts to auxiliary problem in polynomial time to determine a potential improvement.
(3a) (3b)	Computational Challenges: In order to identify tight constraints in polynomial time, we pereach $i \in N$, $j \in N \setminus i$, and $k \in N \setminus \{i, j\}$:
(3c)	1. If $\pi_{i,k} - \pi_{j,k} > 0$, then $k \in U_{i,j}^-$. 2. If $\pi_{i,k} - \pi_{j,k} < 0$, then $k \in U_{i,j}^-$. 3. If $\pi_{i,k} - \pi_{i,k} = 0$, then $k \in U_{i,i}^-$.
(3d) (3e)	To construct the direction LP, include the following class of cor
more	$ \hat{\pi}_{i,\varnothing} - \hat{\pi}_{j,\varnothing} + \hat{\pi}_{i,j} + \sum_{k \in U_{i,j}^+} (\hat{\pi}_{i,k} - \hat{\pi}_{j,k}) + \sum_{k \in W} (\hat{\pi}_{i,k} - \hat{\pi}_{j,k}) \le \\ \forall (i,j) \in A, \ W \subseteq U_{i,j}^=, \ t - U_{i,j}^+ \le W \le (n-t-2) - U $
	Note: If $ U_{i,j}^+ > n - t - 2$ or $ U_{i,j}^+ + U_{i,j}^- < t$, a minor change t
ymmetric	Results: We are currently working to obtain useful results utilizing this for instances of moderate size. Rounding errors have made it o appropriate tolerances for "tight" constraints.

Generating Tours

nstraint generation procedure

nomial-time separation hallenge came down to iteration.

son

Instance

sed formulation of the TSP

vement is roughly 0.06%.

ots to improve it by solving an ential direction of

we perform the following for

of constraints:

 $(k_k) \leq 0,$ $-|U_{i,i}^+|$

ange to $U_{i,i}^+$ and $U_{i,i}^=$ is needed.

g this Primal-Dual Algorithm de it difficult to define

Price-Directed Branch-and-Bound Heuristic

Method:

The lower bound solutions can be used to generate TSP tours in a price-directed tour generation heuristic. The approximate costs-to-go derived from a dual solution serve as proxies for the actual costs as shown below:

If we are currently at city *i* and have cities *U* left to visit, the approx. cost of next visiting city $j \in U$ is given by $\{c_{i,j} + y_{j,U\setminus j}\}$

Computational Challenges:

It is when two cities' approximate costs-to-go are tied that challenges arise. To help us make a decision in this event, we perform further analysis as follows:

- the arc-based TSP formulation on the remaining cities, *U*.
- 2. Update the approx. cost of next visiting each city $k \in \hat{U}$.
- 3. Choose to move to the city of minimum estimated cost.

Note: We have experimented with performing Step (1) both more and less frequently.

To reduce the number of iterations, we fathom branches of the tree when:

- The bound on the cost of a partial tour exceeds the cost of a previously-found
- min cost way to complete that partial tour).

Results:

RED PLOT = min tour cost we found for the given test instance.

Note: Generally, we are able to find a tour of cost no more than 1-2% greater than the optimal tour cost.

Our heuristic terminated in under 10 min for all instances under 50 cities in size. Results for the 70 city instance took approximately 6 hours to obtain. We are currently running experiments on test instances of over 150 cities.

1. For each candidate city $k \in \hat{U}$, solve a subproblem defined as the linear relaxation of

Note: Costs into city k are replaced by costs into the start city ($c_{i,0} \Rightarrow c_{i,k}$).

4. Save the solution to the subproblem in order to calculate relevant costs-to-go later on. 5. In the event that two or more candidate cities are still tied, branch on each tied city.

complete tour (eliminating the need to continue exploring this branch of the tree). • A min cost subproblem yields an integral optimal solution (immediately giving us a