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Background

Problem Statement

•We consider the asymmetric traveling salesman problem (TSP) over cities in N ∪ 0,
where the cost from city i to city j is ci,j ∈ R for i, j = 0, . . . , |N| with i 6= j.

• In previous work(1), the second author:
– applied approximate linear programming (ALP) techniques to the TSP’s dynamic

program (DP) formulation
– found a nested family of polyhedral lower bounds, solvable in polynomial time
• In this poster, we present:

– two methods for solving these ALP formulations to compute TSP lower bounds
– a branch-and-bound heuristic which uses solutions to the ALP to generate TSP

tours via a price-directed policy

Lower Bound Framework

Dual of the Dynamic Programming Formulation:

max y0,N (1a)
s.t. y0,N − yi,N\i ≤ c0i, ∀ i ∈ N (1b)

yi,U∪j− yj,U ≤ cij, ∀ i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j} (1c)
yi,∅ ≤ ci0, ∀ i ∈ N (1d)
y0,N ∈ R; yi,U ∈ R, ∀ i ∈ N, U ⊆ N \ i. (1e)

Approximate Cost-to-Go:

yi,U = πi,∅ + ∑
k∈U

πi,k + ∑
W⊆U
|W|≥n−t

λi,W + ∑
W⊆N\(U∪i)
|W|≥n−t

µi,W for t ≥ 0 (2)

Approximate Linear Programming Formulation:

max y0,N (3a)
s.t. y0,N − πi,∅− ∑

k∈N\i
πi,k ≤ c0i, ∀ i ∈ N (3b)

πi,∅− πj,∅ + πi,j + ∑
k∈U

(πi,k− πj,k) ≤ cij,

∀ i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j}
(3c)

πi,∅ ≤ ci0, ∀ i ∈ N (3d)
y0,N ∈ R; πi,∅ ∈ R ∀ i ∈ N , πi,j ∈ R ∀ i ∈ N, j ∈ N \ i (3e)

Note: The above formulation is for the case where t = 0. It becomes slightly more
complex if t > 0. This poster encompasses results where t = 0 or t = 1.
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Computing Bounds

Constraint Generation Algorithm
Method:
This approach solves the formulation directly, using a constraint generation procedure
to manage the exponential number of constraints.

Computational Challenges:
In previous work of the second author, he outlines a polynomial-time separation
routine for our formulation. Computationally, the main challenge came down to
managing the number of constraints to add/remove each iteration.

Results:
Lower Bound Comparison

Instance
br17 ftv33 ftv35 ftv38 ftv44

% Below Opt.

0.0%

0.5%

1.0%

1.5%

RED PLOT = bound for the linear relaxation of the arc-based formulation of the TSP
BLUE PLOT = bound for our ALP where t = 1

Note: For the ftv35 and ftv38 instances, the bound improvement is roughly 0.06%.

Primal-Dual Algorithm
Method:
This method takes any given feasible solution and attempts to improve it by solving an
auxiliary problem in polynomial time to determine a potential direction of
improvement.

Computational Challenges:
In order to identify tight constraints in polynomial time, we perform the following for
each i ∈ N, j ∈ N\i, and k ∈ N\{i, j}:

1. If πi,k− πj,k > 0, then k ∈ U+
i,j.

2. If πi,k− πj,k < 0, then k ∈ U−i,j.

3. If πi,k− πj,k = 0, then k ∈ U=
i,j.

To construct the direction LP, include the following class of constraints:

π̂i,∅− π̂j,∅+ π̂i,j + ∑k∈U+
i,j
(π̂i,k− π̂j,k) + ∑k∈W(π̂i,k− π̂j,k) ≤ 0,

∀(i, j) ∈ A, W ⊆ U=
i,j, t− |U+

i,j| ≤ |W| ≤ (n− t− 2)− |U+
i,j|

Note: If |U+
i,j| > n− t− 2 or |U+

i,j|+ |U
=
i,j| < t, a minor change to U+

i,j and U=
i,j is needed.

Results:
We are currently working to obtain useful results utilizing this Primal-Dual Algorithm
for instances of moderate size. Rounding errors have made it difficult to define
appropriate tolerances for ”tight” constraints.

Generating Tours

Price-Directed Branch-and-Bound Heuristic
Method:
The lower bound solutions can be used to generate TSP tours in a price-directed tour
generation heuristic. The approximate costs-to-go derived from a dual solution serve
as proxies for the actual costs as shown below:

If we are currently at city i and have cities U left to visit,
the approx. cost of next visiting city j ∈ U is given by { ci,j + yj,U\j }

Computational Challenges:
It is when two cities’ approximate costs-to-go are tied that challenges arise. To help us
make a decision in this event, we perform further analysis as follows:

1. For each candidate city k ∈ Û, solve a subproblem defined as the linear relaxation of
the arc-based TSP formulation on the remaining cities, U.

Note: Costs into city k are replaced by costs into the start city (ci,0⇒ ci,k).

2. Update the approx. cost of next visiting each city k ∈ Û.
3. Choose to move to the city of minimum estimated cost.
4. Save the solution to the subproblem in order to calculate relevant costs-to-go later on.
5. In the event that two or more candidate cities are still tied, branch on each tied city.

Note: We have experimented with performing Step (1) both more and less frequently.

To reduce the number of iterations, we fathom branches of the tree when:

• The bound on the cost of a partial tour exceeds the cost of a previously-found
complete tour (eliminating the need to continue exploring this branch of the tree).
•A min cost subproblem yields an integral optimal solution (immediately giving us a

min cost way to complete that partial tour).

Results:

Min Cost Tours Found

Instance
br17 ftv33 ftv35 ftv38 ftv44 ftv70

% Above Opt.

0.0%

1.0%

2.0%

RED PLOT = min tour cost we found for the given test instance.

Note: Generally, we are able to find a tour of cost no more than 1-2% greater than the
optimal tour cost.

Our heuristic terminated in under 10 min for all instances under 50 cities in size.
Results for the 70 city instance took approximately 6 hours to obtain. We are currently
running experiments on test instances of over 150 cities.


