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Introduction

We focus on generation of deep cutting planes
through the Gomory–Johnson infinite group
relaxation :

x = f +
∑
r∈Rk

rsr ∈ Zk (IR)

sr ∈ Z+ for all r ∈ Rk

s has finite support.

Valid functions. We start by defining the
analog of a cut for the infinite relaxation. We
say that a function π : Rk → R is valid for
(IR) if π ≥ 0 and the inequality∑

r∈Rk
π(r)sr ≥ 1 (1)

is satisfied by every feasible solution s of (IR).

A valid function is:
I Minimal if there is no valid function π̃ 6= π

such that π̃(r) ≤ π(r) for all r ∈ Rk,
I Extreme if it cannot be written as a convex

combination of two other valid functions,
i.e., π = 1

2
π1 + 1

2
π2 implies

π = π1 = π2.
I A Facet if for every valid function π̃, we

have that S(π) ⊆ S(π̃) implies π̃ = π,
where S(π) is the set of all s
satisfying (IR) such that∑
r∈Rk π(r)sr = 1.

Facet ⇒ Extreme ⇒ Minimal

The following theorem was generalized to 2-dimensions by Cornuéjols and Molinaro. We provide a
generalization to k-dimensions.
Theorem[Gomory–Johnson 2-Slope Theorem] Let π : R→ R be a minimal valid function. If π is a
continuous piecewise linear function with only two slopes, then π is a facet.
Definition A function θ : Rk → R is genuinely k-dimensional if there does not exist a function
ϕ : Rk−1→ R and a linear map T : Rk → Rk−1 such that θ = ϕ ◦ T .

Theorem

Let π : Rk → R be a minimal valid function that is piecewise linear with a locally finite cell complex
and genuinely k-dimensional with at most k + 1 slopes. Then π is a facet.

Preliminaries

I Theorem [Minimality Theorem, GJ] Let π : Rk → R be a non-negative function. Then π is a
minimal valid function for (IR) if and only if π(0) = 0, π is periodic with respect to Zk, subadditive,
i.e., π(a+ b) ≤ π(a) + π(b) for all a, b ∈ Rk, and satisfies the symmetry condition, i.e.,
π(r) + π(−f − r) = 1 for all r ∈ Rk.

I Theorem [Facet Theorem] Let π be a minimal valid function. Suppose for every minimal valid
function π̃, we have that E(π) ⊆ E(π̃) implies π̃ = π, where E(θ) denotes the set of all pairs
(u, v) ∈ Rk × Rk such that θ(u+ v) = θ(u) + θ(v). Then π is a facet.

I Lemma [Interval Lemma, GJ] Let θ : R→ R be a function bounded on every bounded interval.
Given real numbers u1 < u2 and v1 < v2, let U = [u1, u2], V = [v1, v2], and
U + V = [u1 + v1, u2 + v2]. If θ(u) + θ(v) = θ(u+ v) for every u ∈ U and v ∈ V , then
there exists c ∈ R such that

θ(u) = θ(u1) + c(u− u1) for every u ∈ U ,

θ(v) = θ(v1) + c(v − v1) for every v ∈ V ,

θ(w) = θ(u1 + v1) + c(w − u1 − v1) for every w ∈ U + V .

I Lemma [KKM] Consider an n-simplex conv(uj)nj=1. Let F1, F2, . . . , Fn be closed sets such that

for all I ⊆ {1, . . . , n}, the face conv(uj)j∈I is contained in
⋃
j∈I Fj. Then the intersection⋂n

j=1 Fj is non-empty.
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Proof of Theorem

Let π have a locally finite, complete polyhedral complex
P in Rk and let {Pi}k+1

i=1 be a partition of the set of
maximal cells of P where π has a distinct slope gi in each
Pi. We consider any minimal valid function π̃ such that
E(π) ⊆ E(π̃) and show that π̃ = π.

Proposition The function π̃ is a piecewise linear function
compatible with {Pi}k+1

i=1 .
Proof. Fix i ∈ {1, . . . , k + 1}. There exists a
maximal cell P0 ∈ Pi containing the origin. Since P0 is
a full-dimensional polyhedron containing the origin, there
exists a full-dimensional parallelotope Π with 0 ∈ Π and
Π + Π ⊆ P0. Using the interval lemma, there exists a
g′i such that π̃(r) = g′i · r for r ∈ Π. Now let P be
any maximal cell in Pi and pick any y ∈ relint(P ). By
applying the interval lemma to translates of P0, we show
π̃ is a piecewise linear function compatible with {Pi}k+1

i=1 .

Proposition π, π̃ are both Lipschitz continuous.

Constructing a system of linear equations

We construct a system of linear equations which is satisfied
by both g1, . . . , gk+1 and g̃1, . . . , g̃k+1.

Lemma ∃ vectors r1, r2, . . . , rk+1 ∈ Rk with:

(i) For every i, j, ` ∈ {1, . . . , k+ 1} with j, ` different
from i, the equations ri · ḡj = ri · ḡ` and ri · g̃j =
ri · g̃` hold.

(ii) cone(ri)k+1
i=1 = Rk.

Proof. We consider the neighborhood Bε(0). Let Fi =⋃
P∈Pi(P ∩ B̄ε(0)).
I The set Fi is disjoint with Hi for i = 1, . . . , k.

For I ⊆ {1, . . . , k + 1}, let CI =
⋂
i/∈IHi. It follows

that for all i /∈ I, Fi disjoint with CI. Alternatively, the
gradient of π in any point in CI ∩ Bε(0) must be within
the set {ḡi}i∈I.

I Cj is full-dimensional for all j = 1, . . . , k + 1.

Pick vj ∈ int(Cj) ∩ Bε(0) for j = 1, . . . , k + 1,
then, vj · ḡi < 0 for all i 6= j and cone(vi)k+1

i=1 = Rk.
∆ = conv(vi)k+1

i=1 is a full-dimensional simplex. Since
∆ ⊆ Bε(0) ⊆

⋃
i=1,...,k+1 Fi, the sets Fi form a closed

cover of ∆. In particular they form a closed cover of each
facet ∆i = conv(vj)j 6=i.
I for every I ⊆ {1, . . . , k + 1} \ {i}, the face

conv(vj)j∈I is contained in
⋃
j∈I Fj.

Therefore, for each i = 1, . . . , k+1, the KKM Lemma im-
plies the existence of a point ri ∈ ∆i belonging to

⋂
j 6=i Fj

as desired. Properties (i) and (ii) follow.
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System of Equations

Corollary Choose a1, a2, . . . , ak+1 ∈ Zk − f such that
cone(ai)k+1

i=1 = Rk. Let r1, r2, . . . , rk+1 be as derived
above. Then there exist µij ∈ R+, i, j ∈ {1, . . . , k+1}
with

∑k+1
j=1 µij = 1 for all i ∈ {1, . . . , k+ 1} such that

both g̃1, . . . , g̃k+1 and ḡ1, . . . , ḡk+1 are solutions to the
linear system∑k+1

j=1(µija
i) · gj = 1 ∀i ∈ {1, . . . , k + 1},

ri · gj − ri · g` = 0 ∀i 6= j, ` ∈ {1, . . . , k + 1}
with variables g1, . . . , gk+1 ∈ Rk. Rewriting the system
reveals it is invertible.

1 a1 µ11a
1 . . . µ1(k+1)a

1 O1×k
... ... ... ... ...
1 ak+1 µ(k+1)1a

k+1 . . . µ(k+1)(k+1)a
k+1 O1×k

Ok×1 Ok×k R1 −I1
... ... . . . ...

Ok×1 Ok×k Rk+1 −Ik+1


Since the system has a unique solution, gi = g̃i for i =
1, . . . , k, and hence π = π̃. �
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