A (k + 1)-Slope Theorem for the k-Dimensional Infinite Group Relaxation

Introduction

We focus on generation of deep cutting planes through the Gomory–Johnson *infinite group* relaxation :

$$x=f+\sum_{r\in \mathbb{R}^k} rs_r\in \mathbb{Z}^k$$
 (IR)

$$s_r \in \mathbb{Z}_+$$
 for all $r \in \mathbb{R}^{\kappa}$
s has finite support.

Valid functions. We start by defining the analog of a cut for the infinite relaxation. We say that a function $\pi\colon \mathbb{R}^k o \mathbb{R}$ is *valid* for (IR) if $\pi \geq 0$ and the inequality

$$\sum_{r \in \mathbb{R}^k} \pi(r) s_r \ge 1 \tag{1}$$

is satisfied by every feasible solution s of (IR).

The following theorem was generalized to 2-dimensions by Cornuéjols and Molinaro. We provide a generalization to k-dimensions.

Theorem[Gomory–Johnson 2-Slope Theorem] Let $\pi : \mathbb{R} \to \mathbb{R}$ be a minimal valid function. If π is a continuous piecewise linear function with only two slopes, then π is a facet. **Definition** A function $\theta \colon \mathbb{R}^k \to \mathbb{R}$ is *genuinely* k-dimensional if there does not exist a function $arphi : \mathbb{R}^{k-1} o \mathbb{R}$ and a linear map $T : \mathbb{R}^k o \mathbb{R}^{k-1}$ such that $heta = arphi \circ T$.

Theorem

Let $\pi \colon \mathbb{R}^k \to \mathbb{R}$ be a minimal valid function that is piecewise linear with a locally finite cell complex and genuinely k-dimensional with at most k+1 slopes. Then π is a facet.

Preliminaries

- **Theorem** [Minimality Theorem, GJ] Let $\pi \colon \mathbb{R}^k \to \mathbb{R}$ be a non-negative function. Then π is a minimal valid function for (IR) if and only if $\pi(0) = 0$, π is periodic with respect to \mathbb{Z}^k , subadditive, i.e., $\pi(a+b) \leq \pi(a) + \pi(b)$ for all $a, b \in \mathbb{R}^k$, and satisfies the symmetry condition, i.e., $\pi(r) + \pi(-f-r) = 1$ for all $r \in \mathbb{R}^k$.
- **Theorem** [Facet Theorem] Let π be a minimal valid function. Suppose for every minimal valid function $\tilde{\pi}$, we have that $E(\pi) \subseteq E(\tilde{\pi})$ implies $\tilde{\pi} = \pi$, where $E(\theta)$ denotes the set of all pairs $(u,v)\in \mathbb{R}^k imes \mathbb{R}^k$ such that heta(u+v)= heta(u)+ heta(v). Then π is a facet.
- **Lemma** [Interval Lemma, GJ] Let $\theta \colon \mathbb{R} \to \mathbb{R}$ be a function bounded on every bounded interval. Given real numbers $u_1 < u_2$ and $v_1 < v_2$, let $U = [u_1, u_2]$, $V = [v_1, v_2]$, and $U+V=[u_1+v_1,u_2+v_2]$. If heta(u)+ heta(v)= heta(u+v) for every $u\in U$ and $v\in V$, then there exists $c \in \mathbb{R}$ such that

$$\theta(u) = \theta(u_1) + c(u - u_1)$$
 for every $\theta(u_1) - \theta(u_1) + c(u - u_1)$ for every

$$\theta(v) = \theta(v_1) + c(v - v_1)$$
 for every $v \in V$,
 $\theta(w) = \theta(u_1 + v_1) + c(w - u_1 - v_1)$ for every $w \in U + V$.

Lemma [KKM] Consider an *n*-simplex $\operatorname{conv}(u^j)_{j=1}^n$. Let F_1, F_2, \ldots, F_n be closed sets such that for all $I \subseteq \{1, \ldots, n\}$, the face $\operatorname{conv}(u^j)_{j \in I}$ is contained in $\bigcup_{j \in I} F_j$. Then the intersection $\bigcap_{i=1}^{n} F_{j}$ is non-empty.

- A valid function is:
- $\pi=\pi_1=\pi_2.$

Amitabh Basu, Robert Hildebrand*, Matthias Köppe, and Marco Molinaro

University of California, Davis and Carnegie Mellon University, Pittsburgh

 \blacktriangleright *Minimal* if there is no valid function $\tilde{\pi} \neq \pi$ such that $ilde{\pi}(r) \leq \pi(r)$ for all $r \in \mathbb{R}^k$, *Extreme* if it cannot be written as a convex combination of two other valid functions, i.e., $\pi = \frac{1}{2}\pi_1 + \frac{1}{2}\pi_2$ implies \blacktriangleright A Facet if for every valid function $\tilde{\pi}$, we have that $S(\pi) \subseteq S(\tilde{\pi})$ implies $\tilde{\pi} = \pi$, where $S(\pi)$ is the set of all ssatisfying (IR) such that $\sum_{r\in \mathbb{R}^k} \pi(r) s_r = 1.$ Facet \Rightarrow Extreme \Rightarrow Minimal

ery $u\in U$,

for every $n \subset V$

Proof of Theorem

Let π have a locally finite, complete polyhedral complex \mathcal{P} in \mathbb{R}^k and let $\{\mathcal{P}_i\}_{i=1}^{k+1}$ be a partition of the set of maximal cells of ${\mathcal P}$ where π has a distinct slope g^i in each \mathcal{P}_i . We consider any minimal valid function $\tilde{\pi}$ such that $E(\pi) \subseteq E(ilde{\pi})$ and show that $ilde{\pi} = \pi$.

Proposition The function $\tilde{\pi}$ is a piecewise linear function compatible with $\{\mathcal{P}_i\}_{i=1}^{k+1}$.

Proof. Fix $i \in \{1, \ldots, k + 1\}$. There exists a maximal cell $P_0 \in \mathcal{P}_i$ containing the origin. Since P_0 is a full-dimensional polyhedron containing the origin, there exists a full-dimensional parallelotope Π with $0 \in \Pi$ and $\Pi + \Pi \subseteq P_0$. Using the interval lemma, there exists a g_i' such that $ilde{\pi}(r) \,=\, g_i' \cdot r$ for $r \,\in\, \Pi$. Now let P be any maximal cell in \mathcal{P}_i and pick any $y \in \operatorname{relint}(P)$. By applying the interval lemma to translates of P_0 , we show $\tilde{\pi}$ is a piecewise linear function compatible with $\{\mathcal{P}_i\}_{i=1}^{k+1}$.

Proposition $\pi, \tilde{\pi}$ are both Lipschitz continuous. **Constructing** a system of linear equations

We construct a system of linear equations which is satisfied by both g^1,\ldots,g^{k+1} and $ilde g^1,\ldots, ilde g^{k+1}.$

Lemma \exists vectors $r^1, r^2, \ldots, r^{k+1} \in \mathbb{R}^k$ with:

(i) For every $i, j, \ell \in \{1, \ldots, k+1\}$ with j, ℓ different from i, the equations $r^i \cdot ar{g}^j = r^i \cdot ar{g}^\ell$ and $r^i \cdot ar{g}^j = c^i \cdot ar{g}^\ell$ $r^i \cdot ilde{g}^\ell$ hold.

(ii) $\operatorname{cone}(r^i)_{i=1}^{k+1} = \mathbb{R}^k$.

Proof. We consider the neighborhood $B_{\varepsilon}(0)$. Let $F_i =$ $igcup_{P\in\mathcal{P}_i}(P\capar{B}_arepsilon(0)).$

 \blacktriangleright The set F_i is disjoint with H_i for $i = 1, \ldots, k$. For $I\subseteq\{1,\ldots,k+1\}$, let $C_I=igcap_{i
otin I}H_i$. It follows that for all $i \notin I$, F_i disjoint with C_I . Alternatively, the gradient of π in any point in $C_I \cap B_{arepsilon}(0)$ must be within the set $\{\bar{g}^i\}_{i\in I}$.

 $\triangleright C_i$ is full-dimensional for all $j = 1, \ldots, k + 1$. Pick $v^j \in \operatorname{int}(C_j) \cap B_{\varepsilon}(0)$ for $j = 1, \ldots, k+1$, then, $v^j \cdot \bar{g}^i < 0$ for all $i \neq j$ and $\operatorname{cone}(v^i)_{i=1}^{k+1} = \mathbb{R}^k$. $\Delta = \operatorname{conv}(v^i)_{i=1}^{k+1}$ is a full-dimensional simplex. Since $\Delta \subseteq B_arepsilon(0) \subseteq igcup_{i=1,...,k+1} F_i$, the sets F_i form a closed cover of Δ . In particular they form a closed cover of each facet $\Delta_i = \operatorname{conv}(v^j)_{j \neq i}$.

 \blacktriangleright for every $I \subseteq \{1, \ldots, k+1\} \setminus \{i\}$, the face $\operatorname{conv}(v^j)_{j\in I}$ is contained in $\bigcup_{i\in I} F_j$.

Therefore, for each $i = 1, \ldots, k+1$, the KKM Lemma implies the existence of a point $r^i \in \Delta_i$ belonging to $igcap_{i
eq i} F_j$ as desired. Properties (i) and (ii) follow.

System of Equations

Corollary Choose $a^1, a^2, \ldots, a^{k+1} \in \mathbb{Z}^k - f$ such that $\operatorname{cone}(a^i)_{i=1}^{k+1} = \mathbb{R}^k$. Let $r^1, r^2, \ldots, r^{k+1}$ be as derived above. Then there exist $\mu_{ij} \in \mathbb{R}_+$, $i, j \in \{1, \dots, k+1\}$ with $\sum_{i=1}^{k+1} \mu_{ij} = 1$ for all $i \in \{1, \dots, k+1\}$ such that both $\tilde{g}^1, \ldots, \tilde{g}^{k+1}$ and $\bar{g}^1, \ldots, \bar{g}^{k+1}$ are solutions to the linear system

$$egin{aligned} \sum_{j=1}^{k+1}(\mu_{ij}a^i)\cdot g^j &= 1 & orall i\in\{1,\ldots,k\} \ r^i\cdot g^j - r^i\cdot g^\ell &= 0 \; orall i
eq j, \ell\in\{1,\ldots,k\} \end{aligned}$$

with variables $g^1, \ldots, g^{k+1} \in \mathbb{R}^k$. Rewriting the system reveals it is invertible.

 $\overset{ ext{i}}{|\mu_{(k+1)1}a^{k+1}\dots\mu_{(k+1)(k+1)}a^{k+1}|} \cdot R_1$ a^{k+1} $O_{k imes 1} | O_{k imes k} |$ R_{k+1} $O_{k imes 1} | O_{k imes k} |$ Since the system has a unique solution, $g^i = ilde{g}^i$ for $i = ilde{g}^i$

 $1,\ldots,k$, and hence $\pi = \tilde{\pi}$.

