Introduction

We focus on generation of deep cutting planes through the Gomory–Johnson infinite group relaxation:

\[x = f + \sum_{r \in \mathbb{R}^k} r s_r \in \mathbb{R}^k \tag{IR} \]

\[s_r \in \mathbb{Z}_+ \text{ for all } r \in \mathbb{R}^k \]

A valid function is:

- Minimal if there is no valid function \(\hat{\pi} \neq \pi \) such that \(\hat{\pi}(r) \leq \pi(r) \) for all \(r \in \mathbb{R}^k \)
- Extreme if it cannot be written as a convex combination of two other valid functions, i.e., \(\pi = \frac{1}{2} \pi_1 + \frac{1}{2} \pi_2 \) implies \(\pi = \pi_1 = \pi_2 \)
- A Facet if for every valid function \(\pi \), we have that \(S(\pi) \subseteq S(\hat{\pi}) \) implies \(\hat{\pi} = \pi \), where \(S(\pi) \) is the set of all \(r \) satisfying (IR) such that \(\sum_{c \in \mathbb{R}^k} \pi(c) r_s = 1 \).
- Facet \(\Rightarrow \) Extreme \(\Rightarrow \) Minimal.

Valid functions. We start by defining the analog of a cut for the infinite relaxation. We say that a function \(\pi : \mathbb{R}^k \to \mathbb{R} \) is valid for (IR) if \(\pi \geq 0 \) and the inequality

\[\sum_{r \in \mathbb{R}^k} \pi(r) s_r \geq 1 \]

is satisfied by every feasible solution \(s \) of (IR).

The following theorem was generalized to 2-dimensions by Cornuésjols and Molinaro. We provide a generalization to \(k \)-dimensions. Theorem (Gomory–Johnson 2-Slope Theorem) Let \(\pi : \mathbb{R} \to \mathbb{R} \) be a minimal valid function. If \(\pi \) is a continuous piecewise linear function with only two slopes, then \(\pi \) is a facet.

Definition A function \(\theta : \mathbb{R}^k \to \mathbb{R} \) is genuinely \(k \)-dimensional if there does not exist a function \(\varphi : \mathbb{R}^{k-1} \to \mathbb{R} \) and a linear map \(T : \mathbb{R}^k \to \mathbb{R}^{k-1} \) such that \(\varphi = \theta \circ T \).

Theorem Let \(\pi : \mathbb{R}^k \to \mathbb{R} \) be a minimal valid function that is piecewise linear with a locally finite cell complex and genuinely \(k \)-dimensional with at most \(k + 1 \) slopes. Then \(\pi \) is a facet.

Proof of Theorem

Let \(\pi \) have a locally finite, complete polyhedral complex \(P \) in \(\mathbb{R}^k \) and let \(\{ P_i \}_{i=1} \) be a partition of the set of maximal cells of \(P \) where \(\pi \) has a distinct slope \(g_i \) in each \(P_i \). We consider any minimal valid function \(\bar{\pi} \) such that \(E(\bar{\pi}) \subseteq E(\pi) \) and that \(\bar{\pi} = \pi \).

Proposition The function \(\bar{\pi} \) is a piecewise linear function compatible with \(\{ P_i \}_{i=1} \).

Proof. Fix \(i \in \{ 1, \ldots, k + 1 \} \). There exists a maximal cell \(P_i \) in \(P \), containing the origin. Since \(P_0 \) is a full-dimensional polyhedron containing the origin, there exists a full-dimensional parallelotope \(\Pi \subseteq \mathbb{R}^k \) such that \(\bar{\pi}(r) = g_i \cdot r \) for \(r \in \Pi \). Now let \(P \) be any maximal cell in \(P_i \) and pick any \(y \in \text{relint}(P) \). By applying the interval lemma to translates of \(P_{i-1} \), we show \(\bar{\pi} \) is a piecewise linear function compatible with \(\{ P_i \}_{i=1} \). \(\square \)

Proposition \(\pi \) and \(\bar{\pi} \) are both Lipschitz continuous.

Constructing a system of linear equations

We construct a system of linear equations which is satisfied by both \(g_i, g_i^{+1}, g_i^{-1} \), and \(g_i, g_i^{+1}, g_i^{-1} \).

Lemma \(\exists \) vectors \(r, r', r'' \in \mathbb{R}^k \) such that the system has a unique solution.

(i) For every \(i, j, \ell \in \{ 1, \ldots, k + 1 \} \) with \(i, j, \ell \) different from \(i \), the equations \(r \cdot g_i = r' \cdot g_i' = r'' \cdot g_i'' \) hold.

(ii) \(\sum_{i=1}^{k+1} (\pi_i(a_i)) \cdot g_i = 1 \) for all \(a_i \in \mathbb{R}^{k+1} \).

Proof. Consider the neighborhood \(B_i(0) \). Let \(F_i = \bigcup_{P \in \mathcal{P}(P)} (P \cap B_i(0)) \).

The set \(F_i \) is disjoint with \(H_i \) for \(i = 1, \ldots, k \).

For \(I \subseteq \{ 1, \ldots, k + 1 \} \), let \(C_I = \bigcap_{i \in I} H_i \). It follows that for all \(i \notin I \), \(F_i \) disjoint with \(C_I \). Alternately, the gradient of \(\pi \) in any point in \(C_I \cap B_i(0) \) must be within the set \(\{ g_i^{1}, g_i^{-1} \} \). \(\square \)

System of Equations

Corollary Choose \(a_1, a_2, \ldots, a^{k+1} \in \mathbb{R}^k \) such that \(\text{cone}(a_1, a_2, \ldots, a^{k+1}) = \mathbb{R}^k \).

Proof. Since the system has a unique solution, \(g_i = g_i' = g_i'' \) for \(i = 1, \ldots, k \), and hence \(\pi = \bar{\pi} \). \(\square \)