
	


	


Moreover, we can show that split cuts and conic MIR cuts are equivalent even 
in the absence of non-negativity for the integer variables. 	


	


	


	


	


	


	


	


This proposition shows that split cuts can be obtained by applying the simple 
conic MIR to the simple aggregation introduced in the next lemma.	


	


	



	


	

Equivalency of Conic MIR and Split Cuts 

We study split cuts for the second-order conic sets of the form	
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In  the  context  of  the  same  set,  Atamturk  et  al.  introduced  an  extended 
formulation  in  a  higher  dimensional  space.  Introducing  auxiliary  variables 
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where     and     denote the ith row of matrix      and vector      respectively. 

	



Simple conic MIR	



	



	



	



	



	



	



Superadditive conic MIR	



	



	



	



	



	



	



	



	



Conic aggregation: Let	
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We report some preliminary numerical results for the closest vector problem of 
the form 	


	


	


Matrix    is generated uniformly at random in {-3, …, 3} and vector    is 
generated  uniformly  at  random in  [-1,1].  In  the  next  table,  we  report  the 
averaged gap closed (in percent), which is the amount that the integrality gap 
is  closed after  adding the cuts.  In the next  table,  # denotes the number of 
instances,  NSC  problem  denotes  the  original  problem  after  adding  the 
nonlinear split  cuts,  conic MIR problem denotes the original  problem after 
adding the conic MIR cuts, El denotes the elementary cuts and NEl denotes 
non-elementary cuts.	
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 Introduction 

where �u, v� is the inner product between u and v. We define split cuts of LC (B, c) as any valid

(linear or non-linear) inequality for LC (B, c)π,π0
for some (π,π0) ∈ Zn ×Z and the split closure of

LC (B, c) as the intersection of all LC (B, c)π,π0
for every possible (π,π0) ∈ Zn × Z.

In the context of the same set, Atamtürk et al. introduced an extended formulation in a higher

dimensional space. Introducing auxiliary variables t ∈ Rn
+, one can reformulate (1) as

|bix− ci| ≤ ti, i = 1, . . . ,m (2)

�t� ≤ t0,

where bi and ci denote the ith rows of matrix B and vector c, respectively. Any absolute value

inequality in (2) implies two linear inequalities and thus, absolute value inequalities in (2) can be

replaced by a system of linear inequalities. There, we may refer to part (2) as the linear part of

the extended formulation.

Atamtürk et al. introduced conic MIR cuts as valid linear inequalities for the linear part of the

extended formulation. In certain cases when the conic MIR cuts can be projected to the original

space of variables, they give us the split cuts. Unfortunately, we can show that not every split cut

can be obtained this way. More specifically, we show that conic MIR cuts are equivalent to linear

split cuts of the linear part of the extended formulation, which all are of the form

(1− 2f)
�
λTBx− �λT c�

�
+ f ≤ |λ|T t,

where λ ∈ Rm
such that BTλ ∈ Zn

, λT c /∈ Z, and f = λT c−�λT c�. It should be noted that similar

to the case of MIR cuts for a system of linear equalities, we can also use negative multipliers. Using

this characterization, we can show that conic MIR closure is strictly dominated by the split closure

of the original non-linear set.

However, we are able to show that split cuts for LC (B, c) are quadratic inequalities with a

simple formula. That is, given a split disjunction (π,π0) ∈ Zn × Z such that π0 < �π, c� < π0 + 1,

LC (B, c)π,π0
is given by the original inequality and a quadratic inequality which is of the form

�AB,π,cx− bB,π,c� ≤ t0,

where

AB,π,c =

�
I − B−1ππTB−T

�B−1π�2 + (2π0 + 1− 2�π, c�) B
−1ππTB−T

�B−1π�2

�
B,

and

bB,π,c =
2(π0 + 1− �π, c�)(π0 − �π, c�)B−1π

�B−1π�2 +

�
I − B−1ππTB−T

�B−1π�2 + (2π0 + 1− 2�π, c�) B
−1ππTB−T

�B−1π�2

�
Bc.

We also extend these results to a more general mixed-integer set defined by a single p-order

conic constraint of the form

Cp := {(x, t0) ∈ Zn × R+ : �x− c�p ≤ t0} ,

where �x − c�p =

�
n�

i=1
|xi − ci|p

�1/p

. We prove that non-linear elementary split cuts are of the

form 

|α (xk − ck) + β|p +
n�

i=1,i �=k

|xi − ci|p



1/p

≤ t0,

and we find a closed-form expression for α and β.
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One of the great strengths of linear integer programming problems is the availability of effective
general-purpose solvers. Development of strong cutting planes has played a crucial role in improv-
ing the effectiveness of these solvers. Split cuts are one of the most effective cutting planes for
linear mixed-integer programming problems. They can be incorporated into solvers through the
simple formulas of Gomory mixed-integer (MIG) inequalities and mixed-integer rounding (MIR)
inequalities.

Conic integer programming is a generalization of linear integer programming which is obtained
by considering conic inequalities in addition to the linear inequalities. These problems can be used to
model a wide range of applications. Unfortunately, available solvers for conic integer programming
problems are still not as effective as those for linear integer programming problems; likely, due to
the lack of efficient cutting planes. Therefore, developing strong cuts for conic integer programs
can lead to more effective solvers.

In this work we focus on a specific mixed-integer set defined by a single second-order conic
constraint. The same specific conic mixed-integer set has been previously studied by Atamtürk et
al. [2008]. They propose an extended formulation of the set and a family of conic MIR inequalities
in a higher dimensional space. They show that for some cases, conic MIR cuts are equivalent to
split cuts. Dadush et al. [2011] and Belotti et al. [2011] also studied specific classes of mixed-integer
sets defined by quadratic constraints. In particular, they studied split cuts for ellipsoids. However,
there is no clear relation between these cuts and conic MIR cuts.

We aim to find simple formulas for split cuts associated with mixed-integer sets defined by a
single second-order conic constraint. Analogous to the linear case, one natural candidate for such
formula is the conic MIR cut of Atamtürk et al.. In some cases conic MIR cuts are equivalent to
split cuts, but unfortunately we can show that not every split cut can be described by conic MIR
cuts. However, we are able to give a simple closed-form expression for every split cut. We can also
show that the set obtained by adding every possible split cut (split closure) strictly dominates the
set obtained by adding every possible conic MIR cut (conic MIR closure).

We also extend the results of second-order conic mixed-integer sets to more general mixed-
integer sets such as p-order cones. In the rest of the abstract, we explain our results in more
detail.

We study second-order conic mixed-integer sets of the form

LC (B, c) := {(x, t0) ∈ Zn × R+ : �Bx− c� ≤ t0} , (1)

where B ∈ Rm×n, c ∈ Rm and � · � denotes the Euclidean norm. Given (π,π0) ∈ Zn ×Z, we define

LC (B, c)π,π0 := Conv ({(x, t0) ∈ LC (B, c) : �π, x� ≤ π0} ∪ {(x, t0) ∈ LC (B, c) : �π, x� ≥ π0 + 1}) ,
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replaced by a system of linear inequalities. There, we may refer to part (2) as the linear part of
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One of the great strengths of linear integer programming problems is the availability of effective
general-purpose solvers. Development of strong cutting planes has played a crucial role in improv-
ing the effectiveness of these solvers. Split cuts are one of the most effective cutting planes for
linear mixed-integer programming problems. They can be incorporated into solvers through the
simple formulas of Gomory mixed-integer (MIG) inequalities and mixed-integer rounding (MIR)
inequalities.

Conic integer programming is a generalization of linear integer programming which is obtained
by considering conic inequalities in addition to the linear inequalities. These problems can be used to
model a wide range of applications. Unfortunately, available solvers for conic integer programming
problems are still not as effective as those for linear integer programming problems; likely, due to
the lack of efficient cutting planes. Therefore, developing strong cuts for conic integer programs
can lead to more effective solvers.

In this work we focus on a specific mixed-integer set defined by a single second-order conic
constraint. The same specific conic mixed-integer set has been previously studied by Atamtürk et
al. [2008]. They propose an extended formulation of the set and a family of conic MIR inequalities
in a higher dimensional space. They show that for some cases, conic MIR cuts are equivalent to
split cuts. Dadush et al. [2011] and Belotti et al. [2011] also studied specific classes of mixed-integer
sets defined by quadratic constraints. In particular, they studied split cuts for ellipsoids. However,
there is no clear relation between these cuts and conic MIR cuts.

We aim to find simple formulas for split cuts associated with mixed-integer sets defined by a
single second-order conic constraint. Analogous to the linear case, one natural candidate for such
formula is the conic MIR cut of Atamtürk et al.. In some cases conic MIR cuts are equivalent to
split cuts, but unfortunately we can show that not every split cut can be described by conic MIR
cuts. However, we are able to give a simple closed-form expression for every split cut. We can also
show that the set obtained by adding every possible split cut (split closure) strictly dominates the
set obtained by adding every possible conic MIR cut (conic MIR closure).

We also extend the results of second-order conic mixed-integer sets to more general mixed-
integer sets such as p-order cones. In the rest of the abstract, we explain our results in more
detail.

We study second-order conic mixed-integer sets of the form
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Cp := {(x, t0) ∈ Zn × R+ : �x− c�p ≤ t0} ,

where �x − c�p =

�
n�

i=1
|xi − ci|p

�1/p

. We prove that non-linear elementary split cuts are of the

form 

|α (xk − ck) + β|p +
n�

i=1,i �=k

|xi − ci|p



1/p

≤ t0,

and we find a closed-form expression for α and β.
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A single split disjunction	



We can show that given a single split disjunction, the associated nonlinear split 
cut dominates the conic MIR cut, and such dominance can be strict.	



	



	



	



A group of split disjunctions	



When there are more than one split disjunctions, it is possible that the conic 
MIR cuts provide a better, and in some cases arbitrarily better, bound than the 
nonlinear split cuts.	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



Nonlinear Split Cuts vs. Conic MIR Cuts 

It is known that when    is the identity matrix and the disjunction is elementary, 
the split cut of               reduces to the conic MIR cut. However, this is not true 
in general. Fortunately, formulas for nonlinear split cuts can be obtained in the 
general case.	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



	



Nonlinear split cuts for ellipsoids	



	



Nonlinear Split Cuts 

Nonlinear split cuts can be extended to more general conic sets such as p-order 
cones. 
 
 
 
 
 
 
 
 
	


	


	


	


	


	


	


	


	


Moreover, nonlinear split cuts can also be extended to the quadratic sets.	



	


	

 Future Work  

One can show that the conic MIR closure is given by

|x1 − 1/2| ≤ t1

|x2 − 1/2| ≤ t2

1/2 ≤ t1

1/2 ≤ t2

�t� ≤ t0.

Example. Consider the second-order cone LC :=
�
(x, t0) ∈ R2 × R+ : �x− c� ≤ t0

�
, where c =�

1/2
1/2

�
. Also consider the elementary split disjunctions π1 =

�
1

0

�
, and π2 =

�
0

1

�
. One can show that

the point (x̄1, x̄2, t̄0) = (1/2, 1/2, 1/2) satisfies all the nonlinear split cuts and as a result, belongs
to the split closure. However, this point will be cut off by the two elementary conic MIR cuts.
Moreover, One can show that the two elementary conic MIR cuts would give the conic MIR closure.

Nevertheless, the nonlinear split cut associated with π3 =

�
2

−1

�
can still cut points from the side of

the conic MIR closure which is illustrated in the next figure.
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(x, t0) ∈ R2 × R+ : �B (x− c) � ≤ t0
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4
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�
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Now if one solves the optimization problem of minimizing t0 over the second-order cone after adding
the cuts, the optimal value of the model with nonlinear split cuts will be larger than the optimal
value of the model with conic MIR cuts with the amount of 0.0105342. Therefore, there are also
instances for which nonlinear split cuts can outperform the conic MIR cuts.

a

Let p ≥ 1 be a real number and consider the p-order cone of the form

Cp := {(x, t0) ∈ Rn × R+ : �x− c�p ≤ t0} ,

where �x− c�p =
�

n�
i=1

|xi − ci|p
�1/p

.
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i=1,i �=k

|xi − ci|p



1/p

≤ t0},

where

α =
π1 + π0 − 2ck

π1 − π0
,

and

β = −2 (π1 − ck) (π0 − ck)

π1 − π0
.

minimize t0 = �B (x− c) �, x ∈ Zn.
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Proposition. Every superadditive conic MIR is a split cut for S+.

Lemma. ss

1

where �u, v� is the inner product between u and v. We define split cuts of LC (B, c) as any valid

(linear or non-linear) inequality for LC (B, c)π,π0
for some (π,π0) ∈ Zn ×Z and the split closure of

LC (B, c) as the intersection of all LC (B, c)π,π0
for every possible (π,π0) ∈ Zn × Z.

In the context of the same set, Atamtürk et al. introduced an extended formulation in a higher

dimensional space. Introducing auxiliary variables t ∈ Rn
+, one can reformulate (1) as

|bix− ci| ≤ ti, i = 1, . . . ,m (2)

�t� ≤ t0,

where bi and ci denote the ith rows of matrix B and vector c, respectively. Any absolute value

inequality in (2) implies two linear inequalities and thus, absolute value inequalities in (2) can be

replaced by a system of linear inequalities. There, we may refer to part (2) as the linear part of

the extended formulation.

Atamtürk et al. introduced conic MIR cuts as valid linear inequalities for the linear part of the

extended formulation. In certain cases when the conic MIR cuts can be projected to the original

space of variables, they give us the split cuts. Unfortunately, we can show that not every split cut

can be obtained this way. More specifically, we show that conic MIR cuts are equivalent to linear

split cuts of the linear part of the extended formulation, which all are of the form

(1− 2f)
�
λTBx− �λT c�

�
+ f ≤ |λ|T t,

where λ ∈ Rm
such that BTλ ∈ Zn

, λT c /∈ Z, and f = λT c−�λT c�. It should be noted that similar

to the case of MIR cuts for a system of linear equalities, we can also use negative multipliers. Using

this characterization, we can show that conic MIR closure is strictly dominated by the split closure

of the original non-linear set.

However, we are able to show that split cuts for LC (B, c) are quadratic inequalities with a

simple formula. That is, given a split disjunction (π,π0) ∈ Zn × Z such that π0 < �π, c� < π0 + 1,

LC (B, c)π,π0
is given by the original inequality and a quadratic inequality which is of the form

�AB,π,cx− bB,π,c� ≤ t0,

where

AB,π,c =

�
I − B−1ππTB−T

�B−1π�2 + (2π0 + 1− 2�π, c�) B
−1ππTB−T

�B−1π�2

�
B,

and

bB,π,c =
2(π0 + 1− �π, c�)(π0 − �π, c�)B−1π

�B−1π�2 +

�
I − B−1ππTB−T

�B−1π�2 + (2π0 + 1− 2�π, c�) B
−1ππTB−T

�B−1π�2

�
Bc.

We also extend these results to a more general mixed-integer set defined by a single p-order
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�1/p

. We prove that non-linear elementary split cuts are of the

form 
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n�
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Proposition (Simple Conic MIR). Let S0 = {(x, t) ∈ Z×R+ : |x− b| ≤
t}, and f = b− �b�. Then

(1− 2f)(x− �b�) + f ≤ t (1)

is valid for S0 and conv(S0) = {(x, t) ∈ R× R+ : |x− b| ≤ t, (1)}.

Theorem (Superadditive Conic MIR). Let S+ = {x ∈ Zn
+, t ∈ R :

|aTx− b| ≤ t}, and let

φf(a) = −a+ 2(1− f)

�
�a�+ (a− �a� − f)+

1− f

�
.

Then for any α �= 0

n�

j=1

φfα(aj/α)xj − φfα(b/α) ≤
t

|α|

is valid for S.

Let
P = {x ∈ Rn, y ∈ Rp : |Ax− b| ≤ t} ,

and λ, µ ∈ Rm
+ . Then

�����

�
µ− λ

2

�T

t+

�
λ+ µ

2

�T

(Ax− b)

����� ≤
�
λ+ µ

2

�T

t+

�
µ− λ

2

�T

(Ax− b)

is a valid inequality for P .
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where �u, v� is the inner product between u and v. We define split cuts of LC (B, c) as any valid
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for every possible (π,π0) ∈ Zn × Z.

In the context of the same set, Atamtürk et al. introduced an extended formulation in a higher

dimensional space. Introducing auxiliary variables t ∈ Rn
+, one can reformulate (1) as
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where bi and ci denote the ith rows of matrix B and vector c, respectively. Any absolute value

inequality in (2) implies two linear inequalities and thus, absolute value inequalities in (2) can be

replaced by a system of linear inequalities. There, we may refer to part (2) as the linear part of

the extended formulation.
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, λT c /∈ Z, and f = λT c−�λT c�. It should be noted that similar

to the case of MIR cuts for a system of linear equalities, we can also use negative multipliers. Using

this characterization, we can show that conic MIR closure is strictly dominated by the split closure

of the original non-linear set.

However, we are able to show that split cuts for LC (B, c) are quadratic inequalities with a

simple formula. That is, given a split disjunction (π,π0) ∈ Zn × Z such that π0 < �π, c� < π0 + 1,

LC (B, c)π,π0
is given by the original inequality and a quadratic inequality which is of the form

�AB,π,cx− bB,π,c� ≤ t0,

where

AB,π,c =
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I − B−1ππTB−T

�B−1π�2 + (2π0 + 1− 2�π, c�) B
−1ππTB−T
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�
B,

and
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We also extend these results to a more general mixed-integer set defined by a single p-order

conic constraint of the form

Cp := {(x, t0) ∈ Zn × R+ : �x− c�p ≤ t0} ,

where �x − c�p =

�
n�

i=1
|xi − ci|p

�1/p

. We prove that non-linear elementary split cuts are of the

form 

|α (xk − ck) + β|p +
n�

i=1,i �=k

|xi − ci|p



1/p

≤ t0,

and we find a closed-form expression for α and β.
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One of the great strengths of linear integer programming problems is the availability of effective
general-purpose solvers. Development of strong cutting planes has played a crucial role in improv-
ing the effectiveness of these solvers. Split cuts are one of the most effective cutting planes for
linear mixed-integer programming problems. They can be incorporated into solvers through the
simple formulas of Gomory mixed-integer (MIG) inequalities and mixed-integer rounding (MIR)
inequalities.

Conic integer programming is a generalization of linear integer programming which is obtained
by considering conic inequalities in addition to the linear inequalities. These problems can be used to
model a wide range of applications. Unfortunately, available solvers for conic integer programming
problems are still not as effective as those for linear integer programming problems; likely, due to
the lack of efficient cutting planes. Therefore, developing strong cuts for conic integer programs
can lead to more effective solvers.

In this work we focus on a specific mixed-integer set defined by a single second-order conic
constraint. The same specific conic mixed-integer set has been previously studied by Atamtürk et
al. [2008]. They propose an extended formulation of the set and a family of conic MIR inequalities
in a higher dimensional space. They show that for some cases, conic MIR cuts are equivalent to
split cuts. Dadush et al. [2011] and Belotti et al. [2011] also studied specific classes of mixed-integer
sets defined by quadratic constraints. In particular, they studied split cuts for ellipsoids. However,
there is no clear relation between these cuts and conic MIR cuts.

We aim to find simple formulas for split cuts associated with mixed-integer sets defined by a
single second-order conic constraint. Analogous to the linear case, one natural candidate for such
formula is the conic MIR cut of Atamtürk et al.. In some cases conic MIR cuts are equivalent to
split cuts, but unfortunately we can show that not every split cut can be described by conic MIR
cuts. However, we are able to give a simple closed-form expression for every split cut. We can also
show that the set obtained by adding every possible split cut (split closure) strictly dominates the
set obtained by adding every possible conic MIR cut (conic MIR closure).

We also extend the results of second-order conic mixed-integer sets to more general mixed-
integer sets such as p-order cones. In the rest of the abstract, we explain our results in more
detail.

We study second-order conic mixed-integer sets of the form

LC (B, c) := {(x, t0) ∈ Zn × R+ : �Bx− c� ≤ t0} , (1)

where B ∈ Rm×n, c ∈ Rm and � · � denotes the Euclidean norm. Given (π,π0) ∈ Zn ×Z, we define

LC (B, c)π,π0 := Conv ({(x, t0) ∈ LC (B, c) : �π, x� ≤ π0} ∪ {(x, t0) ∈ LC (B, c) : �π, x� ≥ π0 + 1}) ,

1

Proposition. Every superadditive conic MIR is a split cut for S+.

Lemma. let λ ∈ Rm. Then
��λTB (x− c)

�� ≤ |λ|T t

is a valid inequality for the higher dimensional representation of LC (B, c).

Proposition. Let λ ∈ Rm be such that ATλ = π ∈ Zn, GTλ = 0, and
λT b /∈ Z. Then

P π,π0 := {(x, t, t0) ∈ Rn × Rm
+ × R+ : |Ax+Gy − b| ≤ t,

(1− 2f)
�
λTAx− �λT b�

�
+ f ≤ |λ|T t},

where π0 = �λT b�, and f = λT b− �λT b�.

Proposition. Let B ∈ Rn×n be an invertible matrix. Also let c ∈ Rn,
(π, π0) ∈ Zn × Z such that π0 < �π, c� < π0 + 1. We have

LC (B, c)π,π0
:= {(x, t0) ∈ Rn × R+ : �B (x− c) � ≤ t0,

�AB,π,cx− bB,π,c� ≤ t0},

where

AB,π,c =

�
I − B−TππTB−1

�B−Tπ�2 +
π1 + π0 − 2�π, c�

π1 − π0

B−TππTB−1

�B−Tπ�2

�
B,

and

bB,π,c =
2 (π1 − �π, c�) (π0 − �π, c�)B−Tπ

(π1 − π0) �B−Tπ�2 + AB,π,cBc.

Proposition. Consider the set LC (B, c) as defined before. Given a single
disjunction (π, π0) ∈ Zn × Z, the associated nonlinear split cut dominates
conic MIR cut.

One can show that the conic MIR closure is given by

|x1 − 1/2| ≤ t1
|x2 − 1/2| ≤ t2

1/2 ≤ t1
1/2 ≤ t2
�t� ≤ t0.
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Example. Consider the second-order cone

LC :=
�
(x, t0) ∈ R2 × R+ : �x− c� ≤ t0

�
,

where c =

�
1/2
1/2

�
. Also consider the elementary disjunctions π1 =

�
1
0

�
, and

π2 =

�
0
1

�
. One can show that the two elementary conic MIR cuts give the

conic MIR closure. Now minimizing t0 over conic MIR closure, one gets the
optimal value of

√
2/2, which is in fact the optimal value of the IP problem

(this is independent of c). However, one can show that the point (x̄1, x̄2, t̄0) =
(1/2, 1/2, 1/2) which does not belong to the conic MIR closure, satisfies all
the nonlinear split cuts and as a result, belongs to the split closure.

Nevertheless, the nonlinear split cut associated with π3 =

�
2
−1

�
can still cut

points from the side of the conic MIR closure which is illustrated in the next
figure.
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after adding the cuts, the optimal value of the model with nonlinear split cuts
will be larger than the optimal value of the model with conic MIR cuts with the
amount of 0.0105342. Therefore, there are also instances for which nonlinear
split cuts can outperform the conic MIR cuts.
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Proposition. Consider the set LC (B, c) as defined before. Given a single
disjunction (π, π0) ∈ Zn × Z, the associated nonlinear split cut dominates
conic MIR cut.

One can show that the conic MIR closure is given by

|x1 − 1/2| ≤ t1
|x2 − 1/2| ≤ t2

1/2 ≤ t1
1/2 ≤ t2
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2

newpage

Example. Consider the second-order cone

LC := {(x, t0) ∈ Rn × R+ : �x− c� ≤ t0} ,

where ci = 1/2 for i ∈ {1, . . . , n}. Also consider the elementary disjunctions
πi = ei, where ei denotes the i-th unit vector. One can show that the ele-
mentary conic MIR cuts give the conic MIR closure. Now minimizing t0 over
conic MIR closure, one gets the optimal value of

√
n/2, which is in fact the

optimal value of the IP problem (this is independent of c). However, one can
show that the point (x̄i, t̄0) = (1/2, 1/2) , i ∈ {1, . . . , n}, which does not belong
to the conic MIR closure, satisfies all the nonlinear split cuts and as a result,
belongs to the split closure.
However, even in the simple case when n = 2, the nonlinear split cut asso-

ciated with π3 =

�
2
−1

�
can still cut points from the side of the conic MIR

closure which is illustrated in the next figure.

Example. Consider the second-order cone

LC :=
�
(x, t0) ∈ R2 × R+ : �B (x− c) � ≤ t0

�
,

where B =

�
1 2
3 4

�
, c =

�
1/4
3/4

�
. Also consider the disjunctions π1 =

�
1
0

�
,

π2 =

�
0
1

�
, and π3 =

�
4
6

�
. Now minimizing t0 over the second-order cone

after adding the cuts, the optimal value of the model with nonlinear split cuts
will be larger than the optimal value of the model with conic MIR cuts with the
amount of 0.0105342. Therefore, there are also instances for which nonlinear
split cuts can outperform the conic MIR cuts.

a
b
c
d
r
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Let p ≥ 1 be a real number and consider the p-order cone of the form

Cp := {(x, t0) ∈ Rn × R+ : �x− c�p ≤ t0} ,

where �x− c�p =
�

n�
i=1

|xi − ci|p
�1/p

.

Proposition. Let c ∈ Rn and k ∈ {1, 2, . . . , n}. For π = ek, where ek denotes
the k-th unit vector, and π0 ∈ Z such that π0 < ck < π0 + 1, we have

Cπ,π0
p := {(x, t0) ∈ Rn × R+ : �x− c�p ≤ t0,



|α (xk − ck) + β|p +
n�

i=1,i �=k

|xi − ci|p



1/p

≤ t0},

where

α =
π1 + π0 − 2ck

π1 − π0
,

and

β = −2 (π1 − ck) (π0 − ck)

π1 − π0
.

minimize t0 = �B (x− c) �, x ∈ Zn.

n No. of instances Relaxation problem (% gap) Relaxation problem with nonlinear split cuts (% gap) Relaxation problem with conic MIR cuts (% gap)

20 10 100 78.08 78.38
30 10 100 80.94 80.98

Table 1: Performance of the nonlinear split cuts and conic MIR cuts when only
elementary disjunctions are added
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Let p ≥ 1 be a real number and consider the p-order cone of the form

Cp := {(x, t0) ∈ Rn × R+ : �x− c�p ≤ t0} ,

where �x− c�p =
�

n�
i=1

|xi − ci|p
�1/p

.

Proposition. Let c ∈ Rn and k ∈ {1, 2, . . . , n}. For π = ek, where ek denotes
the k-th unit vector, and π0 ∈ Z such that π0 < ck < π0 + 1, we have

Cπ,π0
p := {(x, t0) ∈ Rn × R+ : �x− c�p ≤ t0,



|α (xk − ck) + β|p +
n�

i=1,i �=k

|xi − ci|p



1/p

≤ t0},

where

α =
π1 + π0 − 2ck

π1 − π0
,

and

β = −2 (π1 − ck) (π0 − ck)

π1 − π0
.

minimize t0 = �B (x− c) �, x ∈ Zn.

n # Relaxation problem (% gap) NSC problem (% gap) Conic MIR problem (% gap)
El El + NEl El El + NEl

5 10 100 54.27 22.95 56.23 22.28
10 10 100 62.77 49.73 63.13 47.48
15 10 100 71.36 58.86 71.78 57.38
20 10 100 77.71 68.64 78.14 66.79
25 10 100 78.35 74.25 78.55 72.48
30 10 100 83.99 77.29 84.11 75.89
35 7 100 83.46 77.46 83.31 76.54

Table 1: Performance of the nonlinear split cuts and conic MIR cuts when n
elementary and n non-elementary disjunctions are added
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Proposition (Simple Conic MIR). Let

S0 = {(x, t) ∈ Z× R+ : |x− b| ≤ t},

and f = b− �b�. Then

(1− 2f)(x− �b�) + f ≤ t (1)

is valid for S0 and conv(S0) = {(x, t) ∈ R× R+ : |x− b| ≤ t, (1)}.
Theorem (Superadditive Conic MIR). Let S+ = {x ∈ Zn

+, t ∈ R :
|aTx− b| ≤ t}, and let

φf(a) = −a+ 2(1− f)

�
�a�+ (a− �a� − f)+

1− f

�
.

Then for any α �= 0
n�

j=1

φfα(aj/α)xj − φfα(b/α) ≤
t

|α| ,

where fα = b/α− �b/α�, is valid for S.

Let
P = {x ∈ Rn, y ∈ Rp : |Ax− b| ≤ t} ,

and λ, µ ∈ Rm
+ . Then�����

�
µ− λ

2

�T

t+

�
λ+ µ

2

�T

(Ax− b)

����� ≤
�
λ+ µ

2

�T

t+

�
µ− λ

2

�T

(Ax− b)

is a valid inequality for P .
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 Notations 

Proposition. Every superadditive conic MIR is a split cut for S+.

Lemma. let λ ∈ Rm. Then
��λT

(Ax− b)
�� ≤ |λ|T t

is a valid inequality for P .

Definition. Given a convex set C ∈ Rn and (π, π0) ∈ Zn × Z, define
Cπ,π0 := conv ((C ∩ {x ∈ Rn

: �π, x� ≤ π0}) ∪ (C ∩ {x ∈ Rn
: �π, x� ≥ π0 + 1})) .

Proposition. Let λ ∈ Rm be such that ATλ = π ∈ Zn and λT b /∈ Z. Then

P π,π0 := {(x, t, t0) ∈ Rn × Rm
+ × R+ : |Ax− b| ≤ t,

(1− 2f)
�
λTAx− �λT b�

�
+ f ≤ |λ|T t},

where π0 = �λT b�, and f = λT b− �λT b�.
Proposition. Let B ∈ Rn×n be an invertible matrix. Also let c ∈ Rn,
(π, π0) ∈ Zn × Z such that π0 < �π, c� < π0 + 1. We have

LC (B, c)π,π0
:= {(x, t0) ∈ Rn × R+ : �B (x− c) � ≤ t0,

�AB,π,cx− bB,π,c� ≤ t0},
where

AB,π,c =

�
I − B−TππTB−1

�B−Tπ�2 +
π1 + π0 − 2�π, c�

π1 − π0

B−TππTB−1

�B−Tπ�2

�
B,

and

bB,π,c =
2 (π1 − �π, c�) (π0 − �π, c�)B−Tπ

(π1 − π0) �B−Tπ�2 + AB,π,cBc.

Proposition. Consider the set LC (B, c) as defined before. Given a single
disjunction (π, π0) ∈ Zn × Z, the associated nonlinear split cut dominates
conic MIR cut.

One can show that the conic MIR closure is given by

|x1 − 1/2| ≤ t1
|x2 − 1/2| ≤ t2

1/2 ≤ t1
1/2 ≤ t2
�t� ≤ t0.
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Cπ,π0 := conv ((C ∩ {x ∈ Rn : �π, x� ≤ π0}) ∪ (C ∩ {x ∈ Rn : �π, x� ≥ π0 + 1})) .

a
Define split cuts of C as any valid (linear or non-linear) inequality for Cπ,π0

for some (π, π0) ∈ Zn × Z and the split closure of C as the intersection of all
Cπ,π0 for every possible (π, π0) ∈ Zn × Z.

Proposition. Let λ ∈ Rm be such that ATλ = π ∈ Zn and λT b /∈ Z. Then
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a
Define split cuts of C as any valid (linear or non-linear) inequality for Cπ,π0

for some (π, π0) ∈ Zn × Z and the split closure of C as the intersection of all
Cπ,π0 for every possible (π, π0) ∈ Zn × Z.

Proposition. Let λ ∈ Rm be such that ATλ = π ∈ Zn and λT b /∈ Z. Then

P π,π0 := {(x, t, t0) ∈ Rn × Rm
+ × R+ : |Ax− b| ≤ t,

(1− 2f)
�
πTx− �λT b�

�
+ f ≤ |λ|T t},

where π0 = �λT b�, and f = λT b− �λT b�.

Proposition. Let B ∈ Rn×n be an invertible matrix. Also let c ∈ Rn,
(π, π0) ∈ Zn × Z such that π0 < �π, c� < π0 + 1. We have
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2 (π1 − �π, c�) (π0 − �π, c�)B−Tπ

(π1 − π0) �B−Tπ�2 + AB,π,cBc.

Proposition. Consider the set LC (B, c) as defined before. Given a single
disjunction (π, π0) ∈ Zn × Z, the associated nonlinear split cut dominates
conic MIR cut.
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Let p ≥ 1 be a real number and consider the p-order cone of the form

Cp := {(x, t0) ∈ Rn × R+ : �x− c�p ≤ t0} ,

where �x− c�p =
�

n�
i=1

|xi − ci|p
�1/p

.

Proposition. Let c ∈ Rn and k ∈ {1, 2, . . . , n}. For π = ek, where ek denotes
the k-th unit vector, and π0 ∈ Z such that π0 < ck < π0 + 1, we have

Cπ,π0
p := {(x, t0) ∈ Rn × R+ : �x− c�p ≤ t0,



|α (xk − ck) + β|p +
n�

i=1,i �=k

|xi − ci|p



1/p

≤ t0},

where

α =
π1 + π0 − 2ck

π1 − π0
,

and

β = −2 (π1 − ck) (π0 − ck)

π1 − π0
.

minimize t0 = �B (x− c) �, x ∈ Zn.

n # NSC problem (% gap closed) Conic MIR problem (% gap closed)
El El + NEl El El + NEl

5 10 45.73 77.05 43.77 77.72
10 10 37.20 50.27 36.77 52.52
15 10 28.64 41.14 28.22 42.62
20 10 22.29 31.36 21.86 33.21
25 10 21.65 25.75 21.45 27.52
30 10 16 22.71 15.89 24.12
35 7 16.54 22.54 16.68 23.46
Average 26.87 38.69 26.39 41.50

Table 1: Performance of the nonlinear split cuts and conic MIR cuts when n
elementary and n non-elementary disjunctions are added
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�t� ≤ t0.
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