Research Contributions

- Introduced the *n*-mixing set, a new generalization of the mixing set [3] to the case where each constraint has multiple integer variables.
- ▶ Developed the mixed *n*-step MIR inequalities, a class of facet-defining inequalities for *n*-mixing set. ► New families of multi-row cuts for general MIPs
- ► New cuts for special structure MIPs (multi-module lot sizing, multi-module facility location)
- Successful computational results for small MIPLIB instances, random multi-module lot-sizing instances

MIXING INEQUALITIES [3]

 $Q^{m,1} = \{ (y^1, \ldots, y^m, v) \in \mathbb{Z}^m \times \mathbb{R}_+ : \alpha_1 y^i + v \ge \beta_i, i = 1, \ldots, m \}$

- $Q^{m,1}$: mixing set, special case of the set $Q^{m,n}$
- Multi-constraint set, each constraint has 1 integer variable
- Arises in lot-sizing, facility location, network design MIPs
- Variants studied in literature: mixing set with multiple divisible/non-divisible coefficients, continuous mixing set, mixing set with flows, mixing set linked by bidirected paths
- Type I and type II mixing inequalities for $K \subseteq \{1, \ldots, m\}$. Let $K = \{1, \ldots, k\}$ wlog where $\beta_{i-1}^{(1)} \leq \beta_i^{(1)}, i = 2, \ldots, k$.

$$\begin{aligned} v \geqslant \sum_{i=1}^{k} \left(\beta_{i}^{(1)} - \beta_{i-1}^{(1)}\right) \left(\left\lceil \frac{\beta_{i}}{\alpha_{1}} \right\rceil - y^{i}\right) \\ v \geqslant \sum_{i=1}^{k} \left(\beta_{i}^{(1)} - \beta_{i-1}^{(1)}\right) \left(\left\lceil \frac{\beta_{i}}{\alpha_{1}} \right\rceil - y^{i}\right) + \left(\alpha_{1} - \beta_{k}^{(1)}\right) \left(\left\lceil \frac{\beta_{1}}{\alpha_{1}} \right\rceil - y^{1} - 1\right) \end{aligned}$$

- Developed using the MIR inequalities associated with the constraints of $Q^{m,1}$
- Mixing inequalities describe convex hull of the mixing set
- Generate valid inequalities for single capacity lot-sizing, single capacity facility location, capacitated network design problems and general MIPs

n-Step MIR Inequalities [4]

Developed for the mixed integer knapsack set

$$Q^{1,n} = \left\{ (y,v) \in \mathbb{Z} \times \mathbb{Z}_+^{n-1} \times \mathbb{R}_+ : \sum_{j=1}^n \alpha_j y_j + v \ge \beta \right\}$$

n-step MIR facet for $Q^{1,n}$:

$$3^{(n)} \sum_{j=1}^{n} \prod_{l=j+1}^{n} \left\lceil \frac{\beta^{(l-1)}}{\alpha_l} \right\rceil y_j + v \ge \beta^{(n)} \prod_{l=1}^{n} \left\lceil \frac{\beta^{(l-1)}}{\alpha_l} \right\rceil$$

Condition for validity of the *n*-step MIR facet (*n*-step MIR conditions):

$$\alpha_i \left[\beta^{(i-1)} / \alpha_i \right] \leq \alpha_{i-1} \quad \text{for } i = 2, \dots, n$$

Notation: For $\beta \in \mathbb{R}$, $\beta^{(j)} := \beta^{(j-1)} - \alpha_j \left| \beta^{(j-1)} / \alpha_j \right|$

MIXED *n*-STEP MIR INEQUALITIES [7]

▶ *n*-mixing set:

$$Q^{m,n} = \left\{ (y^1, \dots, y^m, v) \in (\mathbb{Z} \times \mathbb{Z}^{n-1}_+)^m \times \mathbb{R}_+ : \sum_{i=1}^n \alpha_j y^i_j + v \ge \beta_i, i = 1, \dots, m \right\}$$

► Wlog $K = \{1, ..., k\}$, where $k \leq m$; *n*-step MIR conditions hold for i = 2, ..., k; and $\beta_{i-1}^{(n)} \leq \beta_i^{(n)}, i = 2, ..., k$. *n*-step MIR inequality associated with constraint *i*:

$$v \ge \beta_i^{(n)} \left(\prod_{l=1}^n \left\lceil \frac{\beta_i^{(l-1)}}{\alpha_l} \right\rceil - \sum_{j=1}^n \prod_{l=j+1}^n \left\lceil \frac{\beta_i^{(l-1)}}{\alpha_l} \right\rceil y_j^i \right)$$

Let

$$\Phi^{i}(y^{i}) = \prod_{l=1}^{n} \left[\frac{\beta_{i}^{(l-1)}}{\alpha_{l}} \right] - \sum_{j=1}^{n} \prod_{l=j+1}^{n} \left[\frac{\beta_{i}^{(l-1)}}{\alpha_{l}} \right] y_{j}^{i}$$

where $y^i = (y_1^i, ..., y_n^i)$. Compact form of *n*-step MIR inequality: $v \ge \beta_i^{(n)} \phi^i(y^i)$. Mixed *n*-step MIR inequalities generated by rows in *K*:

Mixed *n*-step MIR inequalities:
$$\begin{cases} \text{Type I:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) + \left(\alpha_{n} - \beta_{k}^{(n)}\right) \left(\beta_{n}^{(n)} - \beta_{n}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) + \left(\alpha_{n} - \beta_{k}^{(n)}\right) \left(\beta_{n}^{(n)} - \beta_{n}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) + \left(\alpha_{n} - \beta_{k}^{(n)}\right) \left(\beta_{n}^{(n)} - \beta_{n}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) + \left(\alpha_{n} - \beta_{k}^{(n)}\right) \left(\beta_{n}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) + \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) + \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) + \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) + \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) + \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) + \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) + \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) + \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) + \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) \\ \text{Type II:} \quad v \ge \sum_{i=1}^{k} \left(\beta_{i}^{(n)} - \beta_{i-1}^{(n)}\right) \phi^{i}(y^{i}) \\$$

Theorem 1. The type I and type II mixed *n*-step MIR inequalities are valid for $Q^{m,n}$. Consider the following variant of $Q^{m,n}$:

$$\widehat{Q}^{m,n} = \left\{ (y^1, \dots, y^m, v) \in (\mathbb{Z} \times \mathbb{Z}^{n-1}_+)^m \times \mathbb{R}^m_+ : \\ \sum_{j=1}^n \alpha_j y^i_j + v_i \ge \beta_i, i = 1, \dots, m \right\}.$$

Corollary 1. The mixed *n*-step MIR inequalities with *v* replaced by \overline{v} where $\overline{v} \ge v_i$ for $i \in K$, are valid for $\hat{Q}^{m,n}$.

Mixed *n*-Step MIR Inequalities: Facets for the *n*-Mixing Set Sujeevraja Sanjeevi and Kiavash Kianfar Department of Industrial and Systems Engineering, Texas A & M University

$$\begin{array}{l}t \in T\\t \in T\end{array}$$

COMPUTATION - MIPLIB

- Three sets of experiments:
- ► MIR cuts (1MIR)
- Mixed 1-step MIR cuts over MIR cuts (1MIR1Mix)
- Mixed 1-step MIR cuts over MIR cuts (1MIR2Mix)
- Two-row cuts, parameters positive coefficients of integer variables Aggregation and bound substitution heuristics [5] used to generate base inequalities
- Cut addition strategy: ▶ 1MIR: Add violated 1-step MIR cuts, re-optimize LP, add cuts that violate the new solution, re-optimize, and
- repeat until there is no improvement in LP objective. ▶ 1MIR1Mix: Add all possible 1-step MIR cuts according to previous procedure, and add a round of 2-row mixed
- 1-step MIR cuts that violate the LP solution obtained after adding MIR cuts.
- ► 1MIR2Mix: Same procedure as 1MIR1Mix, with 2-row mixed 2-step MIR cuts.

	Instance	flugpl	gt2	lseu	mas74	mas76	mod008	p0033	rgn
DEFAULT	zlp	1167190	13460.2	834.68	10482.8	38893.9	290.93	2520.57	48.8
	zmip	1201500.0	21166.0	1120.0	11801.2	40005.1	307.0	3089.0	82.2
	time	0.0	0.0	0.1	278.6	50.2	0.2	0.0	0.1
	nodes	94	1	101	2672210	403345	577	6	523
	cuts	0	22	47	81	116	98	28	31
1MIR	zcut	1167190.0	20592	918.9	10575.6	39024.0	298.9	2598.1	57.6
	time	0.0	0.0	0.1	305.6	19.5	0.1	0.0	0.3
	nodes	94	1	123	2764416	178778	45	1	1050
	gapclosed	0.00	92.55	29.50	7.04	11.71	49.32	13.64	26.39
1MIR1MIX	cuts	0	29	23	35	40	19	23	0
	zcut	1167190.0	20592.9	942.9	10580.0	39036.0	299.4	2628.2	57.6
	time	0.0	0.0	0.1	325.0	32.5	0.1	0.0	0.3
	nodes	94	1	140	2954935	281679	22	3	1050
	gapclosed	0.00	92.56	37.93	7.37	12.79	52.49	18.93	26.39
1MIR2MIX	cuts	0	472	75	347	138	1432	11	0
	zcut	1167190.0	20726.5	998.9	10583.1	39056.2	300.3	2636.3	57.6
	time	0.0	0.1	0.1	316.4	78.8	0.2	0.0	0.3
	nodes	94	1	132	2734233	296988	39	1	1050
	gapclosed	0.00	94.30	57.57	7.61	14.61	58.58	20.36	26.39
		-							

gapclosed = (zcut-zlp)*100/(zmip-zlp)

COMPUTATION - RANDOM MML

- Four sets of randomly generated MML instances with 60 time periods.
- ► Two sets of capacity modules: (180, 80), (270, 130).
- ► Two sets of setup costs for modules: (1000, 600), (5000, 2600).
- ▶ Instance generation and separation inspired by [2].

Instance		NOCUTS				2MIX				
(α_1, α_2)	(f_t^1, f_t^2)	zlp	zmip	time	nodes	cuts	zcut	time	nodes	gapclosed
(180,80)	(1000,600)	559248	567703	0.3	517	729	566565	0.4	73	86.54
		646576	654258	0.2	506	509	653332	0.2	17	87.95
		615880	623663	0.1	261	443	622775	0.1	1	88.59
		612767	620872	0.0	58	589	620185	0.2	2	91.52
		571612	580115	0.2	470	607	579458	0.1	1	92.27
	(5000,2600)	761700	785624	109.7	508198	572	782166	5.0	2534	85.55
		812633	835040	53.1	228982	741	831892	7.7	1942	85.95
		831488	852734	61.2	240425	567	849985	4.8	2603	87.06
		812841	832604	30.3	145749	520	830666	0.9	399	90.19
		761053	782019	39.8	164846	570	780009	1.2	564	90.41
(270,130)	(1000,600)	730889	741886	0.0	43	488	740768	0.2	22	89.83
		590107	598604	0.0	29	664	597766	0.3	9	90.14
		616219	627391	0.3	412	578	626296	0.2	1	90.20
		619897	630661	0.0	18	721	629622	0.3	22	90.35
		541672	550644	0.0	157	458	549868	0.1	1	91.35
	(5000,2600)	604703	629971	19.2	86812	742	626920	4.9	3288	87.93
		749124	774130	2.0	6809	517	771468	0.9	453	89.35
		703081	726339	0.5	1161	652	724118	0.6	123	90.45
		660877	684319	0.6	1439	651	682235	0.6	183	91.11
		669220	691974	0.6	973	612	690164	0.5	43	92.05

MAJOR REFERENCES

1. K. Aardal, Y. Pochet, L.A. Wolsey, Capacitated facility location: Valid inequalities and facets, Mathematics of Operations Research 20 (1995) 562–582. 2. A. Atamtürk , J.C. Muñoz, A study of the lot-sizing polytope, *Mathematical Programming* 99 (2004) 443–465.

3. O. Günlük, Y. Pochet, Mixing mixed-integer inequalities, *Mathematical Programming* 90 (2001) 429–457.

4. K. Kianfar, Y. Fathi, Generalized mixed integer rounding inequalities: facets for infinite group polyhedra, Mathematical Programming 120 (2009) 313–346. 5. H. Marchand, L.A. Wolsey, Aggregation and mixed integer rounding to solve MIPs, Operations Research 49 (2001) 363–371. 6. Y. Pochet, L.A. Wolsey, Lot-sizing with constant batches: Formulation and valid inequalities, Mathematics of Operations Research 18 (1993) 767–785. 7. S. Sanjeevi, K. Kianfar Mixed n-step MIR inequalities: facets for the n-mixing set, Discrete Optimization (submitted) (2011)