

Fixed task scheduling on single thread processors

Valentina Cacchiani, Alberto Caprara, Paolo Toth DEIS, University of Bologna, Italy

Introduction

Given:

n TASKS: start time, end time, weight

m SINGLE-THREAD PROCESSORS: capacity, cost

Constraints:

■ Each task must be executed from its start time to its end time by a set of processors with overall capacity at least equal to the task weight

■ There may be upper bounds (e.g., one or two) on the number of processors on which each task can be executed

■ There is a setup time from the end of a task to the beginning of the next one on a processor, which in general depends on the two tasks

Goal:

Determine the minimum cost schedule of the task on the processors such that all the tasks are executed

Example

Input:	
Tasks	
A 720 352 389	Output:
B 516 396 356	Workload for each processor
$\begin{array}{c} C \\ \underline{\mathbf{D}} \\ \underline{\mathbf{D}} \\ \underline{\mathbf{S}_{40}} \\ \underline{\mathbf{S}_{52}} \end{array}$	<u>A</u> <u>C</u> <u>D</u>
E 876 720 732	<u>A</u> <u>E</u>
Processors	
360 360 516	<u> </u>

Objectives

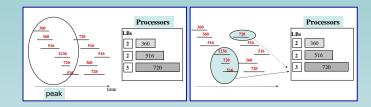
Develop a HEURISTIC ALGORITHM that

obtains good quality solutions in short computing time

can be applied to different variants of the problem (e.g. TRAIN UNIT ASSIGNMENT PROBLEM arising in Railway Optimization)

Method

Compute the Maximum Weighted Stable Set on this Comparability Graph

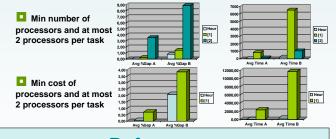

Solve an ILP model to determine a lower bound on the number of processors

Heuristic Algorithm

- Take the Lower Bound as the number of available processors and the tasks in the stable set as the first ones to be assigned
- Assign one task at a time to processor types (based on the task weight and on the capacity of the processors)
- Solve an Assignment Problem for each processor type to find the best sequencing of the tasks assigned to the current type up to now
- Accept the assignment only if its cost respects the LB. Otherwise, try different processor types. If all the assignments violate the LB, leave the task unassigned

Example

Improvement


Feasibility phase: consider the unassigned tasks and assign them by using all the processors

Iterative execution: after the construction of a solution, take the unassigned tasks as the first one to be assigned (together with the tasks in the stable set)

Results

A: 13 Real-world instances

B: 23 Realistic instances

References

 Cacchiani, V., Caprara, A., and Toth, P., "Solving a Real-World Train Unit Assignment Problem", *Mathematical Programming* 124, 207–231 (2010).
Cacchiani, V., Caprara, A., and Toth, P., "A Lagrangian Heuristic for a Train-Unit Assignment Problem", *Discrete Applied Mathematics*, doi: 10.1016/j.dam.2011.10.035.
Cacchiani, V., Caprara A., and Toth, P., "Models and Algorithms for the Train Unit Assignment Problem", in A.R. Mahjoub et al. (Eds.): *ISCO 2012, LNCS 7422*, Springer-Verlag Berlin Heidelberg, 24-35 (2012).