CHANCE-CONSTRAINED BINARY PACKING PROBLEMS

YONGJIA SONG, JAMES LUEDTKE, UNIVERSITY OF WISCONSIN-MADISON, SIMGE KÜÇÜKYAVUZ, THE OHIO STATE UNIVERSITY

PROBLEM DESCRIPTION

A Generic Chance-Constrained Binary Packing Problem

 $\min\{cx \mid \mathbb{P}\{\tilde{A}x \le \tilde{b}\} \ge 1 - \epsilon, \ x \in \{0, 1\}^n\}$

- Uncertainty: nonnegative coefficient matrix \tilde{A} and capacity \tilde{b} .
- Decisions x_j : whether or not to select an item j.
- Chance constraint: The packing constraints are satisfied *jointly* with probability at least $1 - \epsilon$.
- Interesting special cases:
 - *A* is a one-row vector \tilde{a} : Chance-constrained knapsack problems.
 - \tilde{A} is a 0-1 matrix: Chance-constrained set packing problems.

Limitations of Previous Work

- Assumption on the special structure of randomness.
- Conservative approximation.

Our Assumption

- \tilde{A} and \tilde{b} follow a finite distribution
- For general distribution, solve a sample approximation with finite number of scenarios.

A FORMULATION BASED ON PROBABILISTIC COVERS

Probabilistic covers A set *C* is a probabilistic cover, if $\phi(C) > \epsilon$, where $\phi(C) := \sum_{k \in S} p_k \mathbf{1}\{\sum_{j \in C} \tilde{a}_j \leq \tilde{b}\}$ is the probability of violation.

A formulation based on probabilistic covers

 $\sum x_j \leq |C| - 1, \forall \text{ probabilistic cover } C$ $j \in C$

- No extra scenario variables.
- Finite, but exponentially many constraints.

Leverage techniques for cover-based algorithms in deterministic MIP

- Minimal cover inequalities are only facet-defining • Only need an upper bound of (6) for a valid when $x_j = 0, \forall j \notin C$. lifting coefficient. \Rightarrow Again, use the scenariobased upper bound for a lifting coefficient.
- Lifting: Derive valid coefficients for $x_i, j \notin C$ by solving a series of optimization problems.

A NATURAL FORMULATION WITH SCENARIO VARIABLES

(1)

Big-M Formulation with Scenario Variables

Given a set of scenarios *S*, each scenario happens with probability $p_k, k \in S$.

$$\max cx$$
s.t.
$$\sum_{k \in S} p_k z_k \ge 1 - \epsilon$$

$$a^{k}x \leq b^{k} + M^{k}(1 - z_{k}), \forall k \in S$$
$$z \in \{0, 1\}^{|S|}, x \in \{0, 1\}^{n}.$$

• Naive Big-M coefficients may lead to weak relaxation bounds.

Big-M coefficients strengthening

$$M^{k} \ge M_{*}^{k} := \max_{x \in \{0,1\}^{n}} \sum_{j \in N} a_{j}^{k} x_{j} - b_{i}^{k}$$
(2)
s.t.
$$\sum_{k' \in S} p_{k'} \mathbf{1}(a^{k'} x \le b^{k'}) \ge 1 - \epsilon$$

- Another chance-constrained packing problem!
- Valid Big-M: Just an upper bound on M_*^k .

Probabilistic Lifting

• Consider the first variable x_t to be uplifted (lift from 0) in the sequence:

$$\sum_{j \in C} x_j \tag{6}$$

s.t.
$$\sum_{k \in S} p_k \mathbf{1} (\sum_{j \in C} a_j^k x_j \le b^k - a_t^k) \ge 1 - \epsilon$$
$$x \in \{0, 1\}^{|C|}.$$

• Lifting coefficient $\beta_t^* = \max\{|C| - 1 - \zeta_t^*, 0\}.$ • Similar for downlifting: lift from 1.

Coefficient strengthening by Qiu et al [1]

- Update M^k by iteratively solving the LP relaxation of (2) using old M^k to model the logic constraint.
- Problem: very time-consuming.

A Scenario-based Upper Bound for M^k

• Solve for each scenario *k*':

$$(\eta^k)_{k'} := \max \sum_{j \in N} a_j^k x_j - b_i^k$$
 (3)
s.t. $a^{k'} x \le b^{k'}, \ x \in \{0, 1\}^n$

• Sort
$$(\eta^k)_1 \ge (\eta^k)_2 \ge \cdots \ge (\eta^k)_{|S|}$$
.

- Let $q = \max\{k \mid \sum_{j=1}^{k} p_j \leq \epsilon\}$, then $(\eta_i^k)_{q+1}$ gives an upper bound on M_*^k .
- A relaxation of (3) is sufficient for a valid upper bound \Rightarrow efficient!

Instances		IterLP		Scen	
	S	Pre-T	Sol-T	Pre-T	Sol-T
ins1	100	1.5	0.5	0.1	0.3
	1000	696.8	27.1	4.8	14.6
ins2	100	2.3	0.9	0.1	0.8
	1000	1093.1	713.2	8.7	567.5

Enhancement 1: warm start

- Implementation: Zemel's Algorithm ([2]). Idea: warmstart lifting using information from the previous lifting problem.
- Calculate scenario-based upper bound ζ_t^k independently for each scenario k, but update the basis using the same approximated lifting coefficient β_t .

Enhancement 2: local cuts

- A restricted set with some variables fixed. • Get the most violated valid inequality for
 - the restricted set by:
 - Enumerating all non-dominated feasible solutions.
 - Solving the polar CGLP.
- Motivation: better initial valid inequality.

DECOMPOSED PROJECTION

Motivation: Obtain good relaxation from formulation with scenario variables in the cover-based formulation (also true for multi-row).

• X_{proj} = projection of LP relaxation of (1) into xspace \Rightarrow can be used for the cover formulation. • X_{proj} is given by the following inequalities:

$$a^k x \le b^k + M^k, \forall k \in S \tag{4}$$

$$\sum_{k\in\bar{S}}\frac{p_k}{M^k}(a^kx-b^k)\leq\epsilon,\,\forall\bar{S}\subseteq S.$$
 (5)

• Separation of (5) is easy.

NUMERICAL RESULTS

28	No lifting		Lifting		
S	Time	Gap	Time	Gap	
100	>2505(2)	1.9%	64	_	
1000	>3319(2)	0.8%	134	_	
3000	>3600(0)	0.6%	382	_	
100	>3600(0)	2.3%	>3508(1)	0.6%	
1000	>3600(0)	2.1%	>3600(0)	0.7%	
3000	>3600(0)	2.0%	>3600(0)	0.9%	
indispensible.					
20	+local		+local & proj		

es	+10	+local		+local & proj	
S	Time	# Nodes	Time	# Nodes	
100	51	1253	29	1121	
1000	211	1228	172	1243	
3000	606	1783	800	2117	
100	509	2292	36	399	
1000	>2497(3)	>3180	287	419	
3000	>3400(1)	>1740	849	446	

• Local cuts and decomposed projection are useful.

es	Strengthened Big-M		Best Cover	
S	Time	# Nodes	Time	# Nodes
100	0.5	370	29	1121
1000	27	6570	172	1243
3000	>2829(2)	>129792	800	2117
100	1	690	36	399
1000	712	85745	287	419
3000	>3600(0)	>68440	849	446
on (1) does not scale well with # of scenarios				

• Formulation (1) does not scale well with **# of scenarios**.

[1] F. Qiu, S. Ahmed, S. Dey, and L. Wolsey. Covering Linear Programming with Violations. Submitted, 2012.

E. Zemel. Easily Computable Facets of the Knapsack Polytope. Mathematics of Operations Research, volume 14, 1989, page 760–764.