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PROBLEM DESCRIPTION
A Generic Chance-Constrained Binary Packing
Problem

min
{
cx | P{Ãx ≤ b̃} ≥ 1− ε, x ∈ {0, 1}n

}
• Uncertainty: nonnegative coefficient matrix Ã

and capacity b̃.
• Decisions xj : whether or not to select an item j.
• Chance constraint: The packing constraints are

satisfied jointly with probability at least 1− ε.
• Interesting special cases:
• Ã is a one-row vector ã: Chance-constrained

knapsack problems.
• Ã is a 0-1 matrix: Chance-constrained set

packing problems.

Limitations of Previous Work
• Assumption on the special structure of ran-

domness.
• Conservative approximation.

Our Assumption
Ã and b̃ follow a finite distribution
• For general distribution, solve a sample ap-

proximation with finite number of scenarios.

A NATURAL FORMULATION WITH SCENARIO VARIABLES

Big-M Formulation with Scenario Variables

Given a set of scenarios S, each scenario happens
with probability pk, k ∈ S.

max cx

s.t.
∑
k∈S

pkzk ≥ 1− ε (1)

akx ≤ bk +Mk(1− zk),∀k ∈ S
z ∈ {0, 1}|S|, x ∈ {0, 1}n.

• Naive Big-M coefficients may lead to weak relax-
ation bounds.

Big-M coefficients strengthening

Mk ≥Mk
∗ := max

x∈{0,1}n

∑
j∈N

akjxj − bki (2)

s.t.
∑
k′∈S

pk′1(ak
′
x ≤ bk

′
) ≥ 1− ε

• Another chance-constrained packing problem!
• Valid Big-M: Just an upper bound on Mk

∗ .

Coefficient strengthening by Qiu et al [1]
• Update Mk by iteratively solving the LP

relaxation of (2) using old Mk to model
the logic constraint.

• Problem: very time-consuming.

A Scenario-based Upper Bound for Mk

• Solve for each scenario k′:

(ηk)k′ := max
∑
j∈N

akjxj − bki (3)

s.t. ak
′
x ≤ bk

′
, x ∈ {0, 1}n

• Sort (ηk)1 ≥ (ηk)2 ≥ · · · ≥ (ηk)|S|.

• Let q = max{k |
∑k

j=1 pj ≤ ε}, then
(ηki )q+1 gives an upper bound on Mk

∗ .
• A relaxation of (3) is sufficient for a valid

upper bound⇒ efficient!
Instances IterLP Scen

|S| Pre-T Sol-T Pre-T Sol-T
ins1 100 1.5 0.5 0.1 0.3

1000 696.8 27.1 4.8 14.6
ins2 100 2.3 0.9 0.1 0.8

1000 1093.1 713.2 8.7 567.5

DECOMPOSED PROJECTION
Motivation: Obtain good relaxation from formu-
lation with scenario variables in the cover-based
formulation (also true for multi-row).
• Xproj = projection of LP relaxation of (1) into x

space⇒ can be used for the cover formulation.
• Xproj is given by the following inequalities:

akx ≤ bk +Mk, ∀k ∈ S (4)∑
k∈S̄

pk
Mk

(akx− bk) ≤ ε, ∀S̄ ⊆ S. (5)

• Separation of (5) is easy.

NUMERICAL RESULTS
Instances No lifting Lifting

|S| Time Gap Time Gap
ins1 100 >2505(2) 1.9% 64 -

(n=50) 1000 >3319(2) 0.8% 134 -
3000 >3600(0) 0.6% 382 -

ins2 100 >3600(0) 2.3% >3508(1) 0.6%
(n=90) 1000 >3600(0) 2.1% >3600(0) 0.7%

3000 >3600(0) 2.0% >3600(0) 0.9%
• Lifting is indispensible.

Instances +local +local & proj
|S| Time # Nodes Time # Nodes

ins1 100 51 1253 29 1121
(n=50) 1000 211 1228 172 1243

3000 606 1783 800 2117
ins2 100 509 2292 36 399

(n=90) 1000 >2497(3) >3180 287 419
3000 >3400(1) >1740 849 446

• Local cuts and decomposed projection are useful.

Instances Strengthened Big-M Best Cover
|S| Time # Nodes Time # Nodes

ins1 100 0.5 370 29 1121
(n=50) 1000 27 6570 172 1243

3000 >2829(2) >129792 800 2117
ins2 100 1 690 36 399

(n=90) 1000 712 85745 287 419
3000 >3600(0) >68440 849 446

• Formulation (1) does not scale well with # of scenarios.

REFERENCE
[1] F. Qiu, S. Ahmed, S. Dey, and L. Wolsey. Covering Linear Programming with

Violations. Submitted, 2012.
[2] E. Zemel. Easily Computable Facets of the Knapsack Polytope. Mathematics of

Operations Research, volume 14, 1989, page 760–764.

A FORMULATION BASED ON PROBABILISTIC COVERS
Probabilistic covers A set C is a probabilistic cover, if
φ(C) > ε, where φ(C) :=

∑
k∈S pk1{

∑
j∈C ãj � b̃} is

the probability of violation.
A formulation based on probabilistic covers∑

j∈C
xj ≤ |C| − 1,∀ probabilistic cover C

• No extra scenario variables.
• Finite, but exponentially many constraints.

Leverage techniques for cover-based algorithms in
deterministic MIP
• Minimal cover inequalities are only facet-defining

when xj = 0,∀j /∈ C.
• Lifting: Derive valid coefficients for xj , j /∈ C by

solving a series of optimization problems.

Probabilistic Lifting
• Consider the first variable xt to be uplifted (lift

from 0) in the sequence:

ζ∗t = max
∑
j∈C

xj (6)

s.t.
∑
k∈S

pk1(
∑
j∈C

akjxj ≤ bk − akt ) ≥ 1− ε

x ∈ {0, 1}|C|.

• Lifting coefficient β∗t = max{|C| − 1− ζ∗t , 0}.
• Similar for downlifting: lift from 1.
• Only need an upper bound of (6) for a valid

lifting coefficient. ⇒ Again, use the scenario-
based upper bound for a lifting coefficient.

Enhancement 1: warm start
• Implementation: Zemel’s Algorithm ([2]).

Idea: warmstart lifting using information
from the previous lifting problem.

• Calculate scenario-based upper bound ζkt
independently for each scenario k, but up-
date the basis using the same approxi-
mated lifting coefficient βt.

Enhancement 2: local cuts
• A restricted set with some variables fixed.
• Get the most violated valid inequality for

the restricted set by:
• Enumerating all non-dominated feasi-

ble solutions.
• Solving the polar CGLP.

• Motivation: better initial valid inequality.


