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YONG]JIA SONG, JAMES LUEDTKE, UNIVERSITY OF WISCONSIN-MADISON, .. S
SIMGE KUCUKYAVUZ, THE OHIO STATE UNIVERSITY WlSC%NSIN

MADIS ON

PROBLEM DESCRIPTION A NATURAL FORMULATION WITH SCENARIO VARIABLES DECOMPOSED PROJECTION

Coefficient strengthening by Qiu et al [1] Motivation: Obtain good relaxation from formu-

A Generic Chance-Constrained Binary Packing

Big-M Formulation with Scenario Variables

Problem o Update M* by iteratively solving the LP lation with scenario variables in the cover-based
i ) Given a set of scenarios S, each scenario happens relaxation of (2) using old M* to model formulation (also true for multi-row).
. B " . -
minjer | P{Az <b} 21 —¢ € {0,1}"} with probability py, k € 5. the logic constraint. o X, ; =projection of LP relaxation of (1) into x
Uncertainty: nonnegative coefficient matrix A max e e Problem: very time-consuming. space = can be used for the cover formulation.
and capacity b. t - ) A Scenario-based Upper Bound for M* o X, ;1s given by the following inequalities:
.. : . s.t. 2 — €
Decisions z;: whether or not to select an item j. Z P2k — e Solve for each scenario k' L L L
. . . keS a“x < b”+ M",Vk e S (4)
Chance constraint: The packing constraints are N y .
satisfied jointly with probability at least 1 — e. a*r < 0"+ MU(1 = z),Vk € S (N := max Z atz; —b;  (3) ~—(a"z —b") <€, VS C S. (5)
Interesting special cases: z € {0,151 = € {0,1}". JEN
e A is a one-row vector a: Chance-constrained / K’ K’ n
s.t.a” x <b”, x €{0,1} : :
anapsack problems. e Naive Big-M coefficients may lead to weak relax- * Separation of (5) is easy.
e A is a 0-1 matrix: Chance-constrained set ation bounds. o Sort (nf); > (n*)2 > --- > (n*)g.
' lems. : . . : k
packing problems Big-M coefficients strengthening e Let ¢ = max{k | > ._;p; < €}, then NUMERICAL RESULTS
Limitati f Previous Work k j v
N lonst O HTEVIONS OT ME > Ak — k bk ) (777, )q+1 g.lves " upper bf)l}nd on M, : Instances No lifting Lifting
e Assumption on the special structure of ran- =~ VL, -—xef?oaf}n a;xrj — 0 (2) e A relaxation of (3) is sufficient for a valid 5] Time  Gap Time
domness. " JEN upper bound =- etficient! ins1 100 >2505(2) 1.9% 64
e Conservative approximation. s.t. Z prl(a®z <) >1—¢ Instances IterLP Scen (n=0) éggg igg%g% 8'202 égg
Qur Aﬁsumption k'esS — i‘gg PieéT S(Oﬂ;f PgeiT S(O)IE;T ins2 100 >3600(0) 2.3%  >3508(1) 0.6%
A and b follow a finite distribution 1000 6968  27.1 4.8 14.6 (n=30) 1000 >3600(0) 2‘10/ o >3600(0) 0’70/ 0
s | | ' e £ — = 3000  >3600(0) 2.0%  >360000) 0.9%
e For general distribution, solve a sample ap- e Another chance-constrained packing problem! S ' ‘ ' ' e Lifting is indispensible.
SN S p°E ap . 1R k 1000 10931 7132 87  567.5 5 b
proximation with finite number of scenarios. e Valid Big-M: Just an upper bound on M. Thotances Tocal Hlocal & pro;

S| Time #Nodes Time # Nodes
insl 100 51 1253 29 1121

A FORMULATION BASED ON PROBABILISTIC COVERS (n=50) 1000 211 1228 172 1243

3000 606 1783 800 2117
Probabilistic covers A set C' is a probabilistic cover, if Sistic Tift Enhancement 1: warm start ins2 100 509 2292 36 399
5(C) > € where 6(C) = Yyeq Pil{Y ey £ b} is i ——— Implementation: Zemel’s Algorithm ([2 (90 I The e
b Ttw of vinlati kes PkliajeC ™) e Consider the first variable z, to be uplifted (lift | ¢ ‘MPrementation: 26mets Algotthm (12]). 3000 >3400(1)  >1740 849 446
the probability of violation. Idea: warmstart lifting using information e [ocal cuts and decomposed projection are usetul.

from 0) in the sequence:

A formulation based on probabilistic covers from the previous lifting problem.

| Instances Strengthened Big-M Best Cover
o ¢* = max Z . ©6) | * Calculate scenario-based upper bound ¢ Ei Time #Nodes Time # Nodes
Z z; < |C| — 1,V probabilistic cover C ' — / independently for each scenario £, but up- ins1 100 0.5 370 29 1121
JeC o date the basis using the same approxi- (n=50) 1000 27 0070 172 1243
ot Z 1S aba, < b —ab) > 1—e € the 15 PP 3000  >2829(2) >129792 800 2117
o . Sp k —~ 7] = t/ — mated 11ft1ﬂg coefficient B ns? 100 1 690 36 399

. . & IS —

o No .extra scenario Va.r1ables. | o Enhancement 2: local cuts (n=90) 1000 712 85745 287 419
e Finite, but exponentially many constraints. r € {0,1}*1. 3000 >3600(0)  >68440 849 446

o A restricted set with some variables fixed. e Formulation (1) does not scale well with # of scenarios.

e Lifting coefficient 3 = max{|C| — 1 — ¢, 0}. e Get the most violated valid inequality for

the restricted set by:

Similar for d lifting: lift t 1.
¢ Siab 1ot QOWITITHIG. HIt 1TOM . ¢ Enumerating all non-dominated feasi- REFERENCE
¢ Only need an upper bound of (6) for a valid ble solutions
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Leverage techniques for cover-based algorithms in
deterministic MIP

e Minimal cover inequalities are only facet-defining
whenz; =0,Vj ¢ C.

o Lifting: Derive valid coefficients for z;,5 ¢ C by
solving a series of optimization problems.




