Dmitry Fuchs

NOTES ON MANIFOLDS (239)

1. Generalities.
1.1 Definition of a manifold.
1.1.1. Charts.

Let M be a set. An n-dimensional chart on M is a pair (U, ¢) where U is an open
subset of R"™ and ¢ is a 1-1 map of U into M.

Two n-dimensional charts on M, (U, ¢) and (V, ), are called compatible, if

(1) the set o~ 1(p(V)) C U is open (in U = in R");

(2) the set ¥~ (o(U)) C V is open (in V = in R");

(3) the map ¢~ (y(V)) Mmﬁfl(go(U)) is smooth*.

(4) the map =1 (p(U)) Mgo_l(w(V)) is smooth.

In particular, (U, ) and (V) are compatible, if o(U) Ny (V) = 0.
1.1.2. Atlases.

A set {(Un, o) | @ € A} of n-dimensional charts on M is called an (n-dimensional)
atlas if

(1) U Pa(Ua) = M;

acA

(2) For any a, 8 € A the charts (Uy, ¢a), (Us, ¢3) are compatible.

Two n-dimensional atlases on M, A and B are called equivalent, if their union AU B
is also an atlas (in other words, if any chart of A is compatible with any chart of B).

[Notice that this relation is obviously reflexive and symmetric, but it is also transitive
because of the following

LEMMA. Let A be an atlas, and (U, ), (V,1) be charts (not assumed to belong to A).
If (U, ) and (V,v) are compatible with every chart of A, then they are compatible with
each other.

PROOF. Let u € o= (¢(V)) C U, and let # = p(u) € M. Then x € x(W) for some
chart (W, x) € A, © = x(w) for some w € W. Thus,

v p(w) =y @) = o7 (x(w) = 97 (T (e(w)),

and ¢! o ¢ is smooth at (a neighborhood of) u since it is a composition of (appropriate
restrictions of) smooth maps ¢~ oy and x ™! o .

Similarly, ¢! 0% is smooth.

Tis proves Lemma, and we see that if atlases B and C are equivalent to the atlas
A, then every charts of B and C are compatible with every chart of A, hence, they are
compatible with each other, and hence the atlases B and A are equivalent.|

* The word smooth will always mean C°°; in particular, smooth maps are continuous.
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1.1.3. Topology.

Let M be a set with an n-dimensional atlas A. A subset B of M is called open (with
respect to A), if for any chart (U, ¢) € A the set ¢~ !(B) is open (in U = in R"). (In
particular, the sets ¢(U) are open.)

PROPOSITION. If the atlases A and B are equivalent, then a set B C M is open with
respect to A if and only if it is open with respect to B.

PRroOF. For any B C M,

B= |J Bnuv)= |J ¢@(B).

(Viy)eB (V)eB

If B is open with respect to B, then all the sets 1~ (B) are open. Let (U, ) be a chart of
A. Then

e B)=¢" |J v B)= |J e v@'®B)= |J @ o) @ T(B).

(Vy)eB (V)eB (V,p)eB

Since 11y is continuous (see condition (3) in 1.1.1), the last formula shows that =1 (B)
is a union of open set; hence it is also open. Since this is true for any chart (U, ¢) € A,
the set B is open with respect to A. It is easy to check (left to the reader) that sets, open
with respect to an atlas, form a topology (that is, ) and M are open, any union and any
finite intersection of open sets is open).

This proposition shows that an equivalence class of atlases on M makes M a topo-
logical space, and we can speak of its purely topological properties like compactness or
connectedness®. Actually, the two axioms given below in 1.1.4 are of topological nature:
they are called in topology Second Countability Axiom and Hausdorff axiom.

1.1.4. Manifolds.

A class ® of equivalent n-dimensional atlases on M is called an n-dimensional differ-

ential structure on M, if the following two additional conditions hold:

(1) the class © contains an at most countable atlas;

(2) for any different p, g € M there exist disjoint open U,V C M such that p € U, q €
V.

Charts of atlases from ® are called simply charts of ©.

A set M with n-dimensional differential structure is called a (smooth) n-dimensional
manifold.

Note that instead of a class of equivalent atlases we can speak of a mazrimal atlas. An
atlas A is maximal if it contains all charts compatible with all its charts, in other words,

* M is compact, if every atlas contains a finite subatlas; M is connected, if for every
two points p,q € M there exists a finite sequence of charts, {(U;,;), i = 1,...,n} such
that p € 1(U1), ¢ € pn(Un), U; is connected for i = 1,...,n, ¢;(U;) N ;it+1(Uis1) is not
empty fort=1,...,n— 1.



if it contains any atlas which is equivalent to it. Any class of equivalent atlases contains
precisely one maximal atlas: the union of all its atlases. Thus we can define a differential
structure as a maximal atlas (and replace the condition (1) above by the statement that
our maximal atlas contains an at most countable subatlas).

1.1.5. Local coordinates.

Usually, speaking of manifolds, we will not refer explicitly to charts, but rather we
will speak of local coordinates. If (U,p) is a chart of the differential structure of M,
then each point p € ¢(U) is characterized by the n coordinates of ¢~ '(p) € U C R.
Thus, within ¢(U) there arises a (local) coordinate system. If p belongs to the domains
of two different local coordinate systems, then, in some neighborhood of p, we have two
coordinate systems, {xl, ooy Tntand {y1,. .., yn} Axioms (3) and (4) of 1.1.1 mean that,
in this neighborhood, x;’s are smooth functions of yl, ..., Yn, and y;’s are smooth functions

are inverse to each other

of x1,...,x,. Moreover, the Jacobian matrices

ayy H Oz

and, in particular, invertible (non-degenerate).
1.1.6. Orientations.

Let M be a smooth manifold of dimension n > 0, let (U, ¢), (V, ) be two charts of
M, and let p € o(U) N (V). We say that the orientations of the two charts agree at p if
the determinant of the Jacobian matrix of the transformation ¢ ~*(V) — v~ tp(U), x —
() at o~ 1(p) is positive; if this determinant is negative, we say that the orientations
disagree. Obviously, the set of all charts that cover p splits into two classes: the orientations
of charts agree at p within each class and disagree between the classes. These classes are
called orientations at p. Thus, for each point p € M there are two orientations at p.

An atlas is called oriented if the orientations of any two charts (U, ), (V, %) of this
atlas agree at any common point of ¢(U) and ¥ (V). We say that two oriented atlases
determine the same orientation, if their union is also an oriented atlas. An orientation of
a manifold is a class of atlases that determine the same orientation. (In other words, an
orientation is a mazximal oriented atlas, that is an oriented atlas which contains any chart
whose orientation agrees with that of any of its charts.) A manifold is called orientable,
if it possesses an orientation, and is called oriented if an orientation is chosen for it.
For any orientation of an oriented manifold there is the opposite orientation: if the first
orientation is given by an atlas {(U, )}, then the opposite orientation is given by the atlas
{(p(U),pop)} where p is the reflection (z1,x2,...,2,) — (—z1,22,...,2,). Obviously,
the two orientations are different.

An orientation of a manifold may be regarded as a simultaneous choice of orientations
at all its points, provided that this choice is made in a coherent way; the latter means that
any chart (U, ¢) with connected U either belongs to the chosen orientation at every point
of p(U) or does not belong to the chosen orientation at any of these points. (The latter
means also “belongs to the opposite orientation.”)

PROPOSITION. A connected orientable manifold has precisely two different orienta-
tions, and they are opposite to each other. A disconnected manifold is orientable if and only
if all its components are orientable; a choice of an orientation of a disconnected manifold
is the same as (independent) simultaneous choices of orientations for all its components.
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We leave the proof to the reader.
1.2. Examples.

1.2.1. Euclidean spaces.

R™ itself is an n-dimensional manifold. The differential structure is determined by the
one-chart atlas {(R",id)}.

1.2.2. Spheres.

By definition, the n-dimensional sphere S™ is {(z1,...,%ns1) € R | 22 + ... +
z2 ., = 1}. Define the maps ¢, p_:R™ — S™ by the formula

_ 211 2z, 1— 72
Qoi('rla"wx’rL) - (mw"u 1—}-7“2,:‘:1—}-7“2)
where 7% = 22 + ... + 22 (geometrically, @4 (x1,...,7,) is the point of intersection of the
sphere and the line passing through the points (z1,...,z,,0) and (0,...,0,+1) different
from (0,...,0,£1); in geometry, the map gojrl: [S™—(0,...,0,1)] — R™ is called the stere-
ographic projection.). Since the maps ¢y are, obviously, 1-1, we obtain two n-dimensional
charts, (R™, p1). Since ¢4 (R™) = S™ —(0,...,0,%1), it is true that o (R") U ¢_(R") =
S™. The two charts are compatible: ' (¢4 (R")) = ¢ (¢_(R")) = R" — (0,...,0) and
each of the maps ¢~ o goJr,go:Ll op_:R"—(0,...,0) = R™" —(0,...,0) acts as

T In
(l’l,...,xn>'—> <7’_2777“_2)

(geometrically, it is the inversion)* and hence is smooth. Thus, the two charts form an
atlas. We do not check the Hausdorff axiom (actually, the topology arising is the usual
topology of the sphere). Thus, the sphere S™ becomes a smooth n-dimensional manifold.

1.2.3. Projective spaces.

The n-dimensional (real) projective space RP™ is defined as the set of all straight lines
in R"*! passing through the origin. Define the map ¢;: R® — RP", 1 <i < n + 1 in the
following way: ;(x1,...,T,) is the line in R"™! passing through the points (0, ...,0) and
(1,...,@i—1, 1,24 ...,2,). Obviously, ¢; is 1-1, hence (R", ¢;) are n-dimensional charts
on RP™. Also, the sets ¢;(R™) cover RP™ (if a line ¢ € RP™ contains a point (y1, ..., Yn+1)
with y; # 0, then ¢ € ¢;(R")). Let Vi = {(21,...,2,) € R" | 2, # 0}, 1 < k < n.

2 2
* Indeed, (%) +...+ <$—;> =72 and
r r
<a;1 ﬂ) _ 221 2%, 1—r—2
vE\2 2 r2(1+r=2)’ r2(14+r=2)" " 1+4r2
211 2T, 1 —r2 ( )
frd X A
1+T2, ,1+T2,:F1+T2 QOZF 1 yn



Obviously, V. are open in R” and goi_lgoj(R”) =V;_1,ifi <j,and =V}, if 1 > j. The
map ¢ i ;i (R™) — @f toi(R™) is

ijfl e ‘/ia
1 rio1 1 x; Tj_o X Tn e
(a;l,...,:z;n)r—>( ey , , e , ey ,ifi < g,
Tj-1 Tj—1 Tj-1 Tj—1 Tj—1 Tj-1 Tj-1
T Tj—1 Tjt1 i1 1z Tn\ o .
V‘Yj—>‘/;'1,(,@1,...,(1:71)'—)(—',...,—.,—',..., I R R ,1f2>].
Ly Lj Ly Ly Tj Tj Ly

This is smooth, hence the charts (R™, ¢;) are mutually compatible and thus they form an
atlas. We skip checking the Hausdorff axiom and conclude that RP™ acquires a structure
of a smooth n-dimensional manifold.

1.2.4. Grassmann manifolds.

For non-negative integers m,n, denote as G(n,m) the set of all n-dimensional sub-
spaces of the space R"*™. (In particular, G(0,m) and G(n,0) are one-point sets, and
G(1,n) is RP™.) Our goal is to equip G(n,m) with the structure of an mn-dimensional
manifold. This manifold is known as the Grassmann manifold.

For a m € G(n,m), define the map ¢,: L(7,7+) — G(n,m) (where L(m,71) is the
(mn-dimensional) space of all linear maps from 7 to =) by the formula

Pr(a) = (id; ®a)(m)

(here id,; ®a is regarded as a map 7 — 7 ® 7+ = R"t™; in other words, ¢, () is the
graph of a in 7@ 7+ = R”*™). Obviously, ¢, is one-to-one (equal graphs = equal maps),
thus, (L(m,71),r) is an nm-dimensional chart of G(n,m). The images @, (L(m,71))
cover G(n,m) (for example, T = p,(0) € . (L(m,7+))). Let us prove that these charts
are mutually compatible.

ﬂ_J_

(m')*

pr(@) 7 orr (B)

7’

U+ o) Fuly)+ Blfa))
N Ualw)

o o(y)
e fa(y)

, s

Let m, 7" € G(n,m), and let p,p’ be orthogonal projections of R"*™ onto 7, 7'. We
want to check that the map F = @' or: o7 (o (L(7, (7)) — 07! (pr(L(m,71))) is
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smooth. For a € L(m, 7 1), € L(7', (7')*, the equality F(a) = 3 means that ¢, (a) =
o (B). Let fo:m — 7' be defined by the formula f, = p’ o (id7 + «). We need two
things: f, is invertible and for every y € 7, y + a(y) = (y) + B(fa(y)) (the condition
det fo, # 0 gives an exact description of the subset ¢ (go7T (L(x', (7")1))) of L(m,7t)
which is therefore open). For 8 we have (id, ®&3) o f, = id; ®a, or

B =F(a) = (id; ®a)o f;' —id.

(it follows from our construction that the image of 3 is contained in (7)*).
Notice that this construction provides G(n,m) with an infinite atlas with charts la-
beled by m € G(n,m); but actually, we do need all this charts: it is sufficient to consider

n-—+m . . .
only charts corresponding to subspaces w spanned with n coordinate axes. After
n

this reduction, the atlas generalizes the atlas constructed in 1.2.3 for projective spaces.
1.2.5. Atlases not satisfying additional axioms of 1.1.4.

There are many examples of atlases which do not satisfy the topological restrictions
of 1.1.4 (second countability and Hausdorff’s axiom). Some of this examples are artificial,

but some represent important mathematical notions (like the example considered in 1.2.5.3
below).

1.2.5.1. Uncountable unions.

A disjoint union M = Hae 4 M, where A is an uncountable set and each M, is a
(non-empty) smooth n-dimensional manifold has a natural n-dimensional atlas consisting
of all charts of all M,’s. This atlas satisfies the Hausdorff axiom, but not the countability
axiom.

There are also examples of atlases which give rise to uncountable Hausdorff topology
satisfying the property of connectedness.

1.2.5.2. A double line.

Let M = (R x{0,1})/(¢,0) ~ (¢,1), if t < 0. The two charts g, p1: R — M, @;(t) =
(t,4) form a 1-dimensional atlas of M, but the Hausdorff axiom does not hold (the points
(0,0),(0,1) do not have disjoint open neighborhoods):

—
~__

1.2.5.3. An example from the sheaf theory.

Let p € R. Call two smooth functions f, g: R — R equivalent at p, if, for some € > 0,
f(z) = g(x)Vz € [p—e,p+¢]. Equivalence classes of functions with respect to this relation
are called germs of functions at p, and the set of germs of functions at p is denoted as
Sp- Let S be the union [[ g Sp. Every smooth function f:R — R belongs to a certain
germ, fp, for every p € R (this germ f, is referred to as the germ of f at p). The map
e R—S, ¢r(p) = fp €Sy, CS,is 1 —1 and may be regarded as a 1-dimensional chart
of S. These charts cover S (every germ is a germ of some function).

For two smooth functions, f, g: R — R the conditions ¢ (p) € ¥4(R) and ¢ ¢(p) € ¥4(R
are equivalent to each other and are equivalent to the equality f, = g, that is, to the fact
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that f and g agree in some neighborhood of p. It is clear that this set is open, that it
is both ;"4 (R) and ¢le¢g (R), and that the maps from conditions (3) and (4) of 1.1.1
are both equal to id. Thus, the charts (R, ¢s) form a 1-dimensional atlas of S. However,
neither of coditions (1) and (2) in 1.1.4 is satisfied. First, S is not second countable, since
the sets ¢.(R) for constant functions ¢ form an uncountable set of mutually disjoint open
subsets of S. Second, S is not Hausdorff; moreover, for every s € S there exists an s’ € S
such that s and s’ have no disjoint open neighborhoods: if s = f,, then we can put s’ = g,
where g: R — R is such smooth function that g(x) = f(x) for z > p and g(z) # f(z) for
x < p (examples of such functions are well known; we will need a precise description of
them below, see 1.3.3.2.1).

One can think of the topological space S as of the union of all graphs of all smooth
functions R — R; if two functions agree on an open interval, we glue the graphs together
(but do not glue them at the endpoints of the interval); if, say, two functions agree at an
isolated value of the argument, we consider the graphs as disjoint at this point. And the
intersection of § with any vertical line = const is discrete.

The picture below (see next page) shows a small portion of S (the union of four
graphs).

The topology of S is called the sheaf topology. The construction presented here has
multiple generalizations which are important in the so called sheaf theory.

<X
__

/

1.2.6. Constructions.

In 1.2.1-1.2.4, we considered some important but still sporadic examples of smooth
manifold. Our supply of examples will grow immensely, if we apply to existing examples
various constructions which can create manifolds from other manifolds. Some of these
constructions are discussed in this section.

1.2.6.1. Products.

In M and N are smooth manifolds of dimension m and n, then M x N is a smooth
manifold of dimension m + n. The differential structure of M x N consists of all products
(U xV, ¢ x 1) where (U, ¢) and (V, 1) are charts from the differential structures of M and
N correspondingly. (We consider U x V as an open subset of R™*™ = R™ x R™.) We can
also consider multiple (finite) products My x ... x Mj.

1.2.6.2. Open sets.

If M is an n-dimensional smooth manifold and B C M is an open set, then B also
has a natural structure of an n-dimensional smooth manifold: the differential structure in
B consists of charts <90_1(B), © ’go_l(B)) for all charts (U, ¢) of M.
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1.2.6.3. Submanifolds.
1.2.6.3.1. Definition.

Let N be an n-dimensional smooth manifold. A subset M C N is called an m-
dimensional submanifold of M (where m < n) if for any point p € M there exists a
chart (U, ) of N such that o= 1(M) = U NR™ (we consider R™ as a subset of R",
(x1,...,Tm) € R™ is identified with (21, ..., 2:,,0....,0) € R™).

An m-dimensional submanifold M of an n-dimensional smooth manifold N is an m-
dimensional smooth manifold: the charts (U NR™, ¢ 7N Rm) considered for all charts
(U, ) of N such that ¢~}(M) = UNR™ constitute an m-dimensional differential structure
on M. It is not difficult to check that the conditions (1) and (2) from 1.1.4 hold for this
differential structure, so M acquires a structure of an m-dimensional smooth manifold.

Notice that the topology of a submanifold (in the sense of 1.1.3) is the same as the
topology induced by the topology of the manifold as defined in the point set topology.

EXAMPLE. An n-dimensional submanifold of an n-dimensional smooth manifold N is
an open subset of N. Indeed, if m = n, then R™ = R™, U NR™ = U, and the condition
@ 1(M) =UNR™ becomes p(U) C M.

1.2.6.3.2. Submanifolds of Euclidean spaces (a preliminary definition).

Let M C R™ is described by a system of equations F;(x1,...,2,) =0, i=1,...,n —

m where Fi, ..., F,,_, are smooth real-valued functions in an open neighborhood of M
in R™ which satisfy the following non-degeneracy condition: if, for some (z9,...,22) €
R", F;(x?,...,20) =0 for i =1,...,n — m, then the Jacobian matrix

o 0F

81‘1 o 8xn

OF,—m OF,—m

0z, o 0z,

at the point (29, ..., 2%) has maximal rank (that is, n —m). Then M is an m-dimensional

submanifold of R”. The proof is based on a result from standard multi-variable calculus
known under the name of Inverse Function Theorem. Here it is.

LEMMA (INVERSE FUNCTION THEOREM). Let hy,...,h,) be smooth functions of n
variables w1, ..., x,, defined in some neighborhood of a point P = (29,...,20) € R™ and

Oz
W of P (within the domain of h;’s) such that the map h: W — R™ with the coordinate
functions hq, ..., hy, that is,

such that the Jacobian matrix (P) is non-singular. Then there exists a neighborhood

h(zy,...,xn) = (h1(x1,. .., 2pn), -« s ha(x1, ..oy 20)),

is invertible in the sense that there is a smooth map o(= h™1):h(W) — W such that
poh=idw, hop=id,w)-

PROOF of this Theorem can be found in calculus textbooks.



Now, let (29,...,29) € M, and let ky,... kp_m, 1 < k; < ... < kp_m < n be such

7

numbers that det #£0. Let 41,..., 0, 1 <V <...</¥, <n be the remaining

Tk,
subscripts (that is, {k1,...,kn—m} U {l1,...,n} = {1,...,n}). Consider the functions
Ay || .
YL =205 Ym = To,, s Ym+1 = F1, ..., Yn = Fy_pmy. The Jacobian matrix i is
Ly
lq ly lpn
1
1
1
oF; oF;
81‘1 895”
OF,_m OF —m
6.(171 6-fljn

(with zeroes in the blank spots). The determinant of this matrix is, obviously, 4 det

‘ kaj
which is not zero at P. By Inverse Function Theorem, there exists a neighborhood W of
P, an open set U C R™ (denoted as h(W) in Inverse Function Theorem), and a smooth
invertible 1-1 map ¢p:U — W C R, ¢(z1,...,2n) = (Y1,---,Yn)*. Then o 1(M) =
ol {F=...=F_ 0n=0})={yms1=-... = yp = 0} = UNR™. Thus, (U, ) is a chart
from the definition of a submanifold.

EXAMPLE. S™ is defined in R"*! by one equation F(z1,...,Zn41) = 2% + ... +
OF OF
61'1" o 8a:n+1
nowhere vanishes) in S™. Hence, S™ is an n-dimensional submanifold of R™, and in this
capacity, it acquires a structure of an n-dimensional smooth manifold. It is true (the proof
is left to the reader) that this is the same structure as the one described in 1.2.2.

z2 = ||221,...,2z,4+1| has rank 1 (that is,

+1 — 1 = 0. The matrix

1.2.6.3.3. A generalization.

We do not need to assume that the functions F; are defined globally. It is sufficient to
have, for any point ¢ € M a neighborhood W of ¢ in R" and functions Fy,..., F,,_,,: W —
R, satisfying the non-degeneracy condition as above and such that {p € W | Fi(p) = ... =
Fo—m(p) =0} = W N M. In this case, arguing precisely as before, we can show that M is
a submanifold of R™.

1.2.6.3.4. A further generalization.

We can replace R" by an arbitrary n-dimensional smooth manifold N. The neighbor-
hood W from the last construction should be replaced by a chart (W, ¢) of N. Details are
left to the reader.

* In different words, y1, ..., y, are liocal coordinates in W.
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1.2.6.3.5. A final remark.

The notion of a submanifold expands our stock of examples of manifolds immensely
since now we count count among them all curves and surfaces in the plane and in space,
and also all multidimensional surfaces in Euclidean spaces.

1.2.7. Orientability.

Since a one-chart atlas is automatically oriented, R is orientable and has a canonical
orientation.

The orientations of the charts (R™, ¢4 ) of S™ (see 1.2..2) disagree at all common points
(it is clear geometrically, but can also be confirmed by a computation: the determinant of
the Jacobian matrix of the map ¢! o ¢ is equal to —r?", which is negative. Hence, the
atlas {(R™, 40, (R™, ¢_op)} (see 1.1.6) is oriented, and S™ is an orientable manifold.

The case of RP™ is more interesting. The determinant of the Jacobian matrix of the
transformation V;_; — V; described in 1.2.3 is easy to compute and equals (—1)7 _ixj__(?ﬂ).
If n is odd, then the orientations of the charts (R™, ¢;), (R™, ;) agree if i,j have the
same parity and disagree otherwise; thus, in this case, the charts (R™,¢q), (R™, o o
p)y (R™ @3), (R™, @40p),...,(R™ ¢n), (R", @n410p) form and oriented atlas. On the con-
trary, if n is even, then the orientations any two of our charts agree at some points and
disagree at some other points. Since all the charts are connected (their common domain
is R™), this contradicts to the existence of any orientation at all: no choice of orientations
at all points of RP™ can be coherent (see 1.1.6) within any two of the charts. Thus, RP"
(with n > 0) is orientable if and only if n is odd.

Products of manifolds is orientable if and only if all the factors are are orientable;
moreover, orientations of factors determine an orientation of the product (which may
depend, however, on the order of factors). Open subsets of an orientable manifold are
orientable and inherit an orientation from the ambient manifold. No definite relation
exists in general between the orientabilities of a manifold and a submanifold; we can only
state that a submanifold given in an orientable manifold by a single non-degenerate system
of equations is also orientable (the proof is left to the reader).

1.3. Maps and functions.
1.3.1. Definition of a smooth map.

Let M and N be two manifolds of dimensions m and n. A map f: M — N is called
smooth, if for any charts, (U, ¢) of M and (V, ) of N, theset W = o= 1(f~1(¢(V))) C Uis
open in U (if we stop here, our condition would mean precisely that f is continuous) and the
map g: W — V, g(w) = ¥~ (f(¢(w))) is smooth. We can obtain an equivalent definition of
a smooth map if restrict the conditions above to charts belonging to any two specific atlases
representing the differential structures of M and N, or if we require that for any point
p € M there exist charts (U, ) of M and (V,4) of N such that p € p(U), f(p) € (V)
and the conditions above hold.

As we have already mentioned above, smooth maps are continuous.

1.3.2. Diffeomorphisms, embeddings and immersions.

A smooth map f: M — N is called a diffeomorphism, if f is invertible (1-1 and onto)
and the inverse map f~': N — M is also smooth. Obviously, identities are diffeomor-
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phisms; furthermore, compositions of diffeomorphisms and inverses to diffeomorphisms
are diffeomorphisms as well.

If a diffeomorphism M — N exists, then the manifolds M and N are called diffeo-
morphic. It is obvious that diffeomorphic manifolds are homeomorphic '; in particular if
one of two diffeomorphic manifolds is compact, or connected, or simply connected, then
so is the other one. Also, diffeomorphic manifolds have equal dimensions. (Proof. Let
f:M — N be a diffeomorphism, p € M and ¢ = f(p) € N. Let U,¢) and V, %) be the
charts of M and N containing p and gq. The the maps ¢~ fo: o=t f~1p(V) — = fo(U)
and o L f 717 fp(U) — o 1 f~19(V) are smooth, inverse to each other maps be-
tween open sets in Euclidean spaces; their Jacobian matrices, correspondingly at o~ !(p)
and ¥ ~!(q) are inverse to each other, hence they are square matrices.)?

A map f: M — N is called a (smooth) embedding, if it is a diffeomorphism of M onto
a submanifold of N3. A map f: M — N is called an immersion, if it is a local embedding,
that is, if for any point p € M there exists a neighborhood B C M such that f|g: B — N
is an embedding. Informally speaking, immersions are embeddings with self-intersections.
An enhanced definition of immersions will be discussed below, in 2.2.4.

1.3.3. Functions.
1.3.3.1. The ring of functions.

Smooth maps M — R (where R is regarded as a 1-dimensional manifold) are called
smooth functions. Smooth functions of M form a ring; this ring is denoted as C°°(M).

1.3.3.2. Some auxiliary functions.

All functions considered below in this Section are smooth and take values in the closed
interval [0, 1].

1.3.3.2.1. Three functions on the line.

Yy
L, 01
_Je ™ ifx >0,
p(x)_{o, if2 <0
_ N N N xr
—1 0 1 2 3

! Homeomorphic smooth manifolds are not necessarily diffeomorphic. Examples of
smooth manifolds homeomorphic, but not diffeomorphic, to S7 were first constructed by
J.Milnor in 1956. Examples of smooth manifolds homeomorphic, but not diffeomorphic,
to R* were constructed by S.Donaldson and M.Friedman in 1982.

2 Tt is also true that homeomorphic manifolds have equal dimensions, but the proof
requires a bit of algebraic topology.

3 There exists a variety of embedding theorems. In particular, any smooth manifold may
be embedded into an Euclidean space as a closed submanifold. Hence, the construction of
1.2.6.3.3 gives, actually, all existing manifolds, up to a diffeomorphism.

4 There exists a theorem (due to Shields) that if, for two smooth manifolds M and N, the
rings C*°(M) and C*°(N) are isomorphic, then the manifolds M and N are diffeomorphic.

11



Notice that
p(z) =0 for z <0,

p(z) > 0 for z > 0,

and p(0) = p'(0) = p”(0) = p""(0) = ... =0.
For a < b,

0ap(x) = p(z — a)p(b — z)

~ T
a b
Notice that
oap(r) =0 for z < aand z > b,
oap(x) >0 for a <z <b.
Also for a < b,
Yy
1
b
Oap(u)du
fa Oap(u)du _ oz
a b

Notice that
Tap(x) =1 for z < a,

0 < Tap(x) <1fora<x<b,
Tap(z) = 0 for ¢ > b.
1.3.3.2.2. A function on R".
For R >r >0,

A r(Z1, ..., 20) ZTT7R( x%—i——l—x%)

This function is smooth, is equal to 1 within the ball of radius r centered at 0 € R™ and
is equal to 1 in the complement of the ball of radius R centered at 0.

1.3.3.2.3. Functions on manifolds.

PROPOSITION 1. Let M be a smooth manifold, p € M be a point and B C M be a
neighborhood of p. There exists a smooth function on M taking values in [0,1] and such
that f =1 in some neighborhood of p and f = 0 in the complement of B.

Proof. Let (U, ¢) be a chart of M such that p = ¢(0), let R be a positive number such
that o~ 1(B) contains the closed ball of radius R centered at 0, and let r be any number
such that 0 < r < R. The function f: M — R,

R
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satisfies the conditions in Proposition.

PROPOSITION 2. Let M be a smooth manifold, K C M be a compact set and B C M
be a neighborhood of K, that is, an open subset of M containing K. There exists a function
on M such that f =1 in some neighborhood of K and f = 0 in the complement of B.

REMARK. We will see below (in 1.3.3.4) that the assumption of compactness for K
may be replaced by a weaker assumption of closedness.

Proof. For each p find a function f,: M — R as in Proposition 1, that is, equal to
one in some neighborhood of p and equal to 0 in the complement of B. Let A, be this
neighborhood of p. Open sets A, cover K, and, by the definition of a compact set, there
exist a finite set {p1,...,pn} of points of K such that the sets A, ,..., A, also cover K.
The function f =1—(1— fp,)...(1 — fpy) is equal to 1 in vazl A, O K and equal to 0
in the complement of B.

COROLLARY. Let M be a smooth manifold, K C M be a compact set and B C M be
a neighborhood of K. There exists a neighborhood A of K such that A C B.

Proof. Take a function f from Proposition 2 and put A = {q € M | f(q) > 1/2}. Or
take A = Uf\il Ay, from the previous proof.

1.3.3.3. Open covers.
1.3.3.3.1. Base of topology.

Below, we denote by d7 ., or simply by d; ,, an open ball in R™ with radius r centered

at x € R™. In the case when x = 0, the notation dy , is abbreviated to d,.

Let M be a smooth n-dimensional manifold. According to condition (1) in 1.1.4,
M has a countable atlas, say {(U;,y;)}. Consider all sets ¢;(d; ) where = has rational
coordinates, r is rational and d, , C U;. Obviously, these balls d, , cover U; and hence
these sets ¢;(dy, ) cover M. We will denote this cover by W.

It is important that and any open subset U of M is the union of some sets from
W; namely, U = UWeW,WcU W. (In point-set topology, a family of open sets with this
property is called a base of topology.) Another important property of these sets is that
they all have compact closures.

1.3.3.3.2. Some terminology.

Let U and V be two open covers of M. We say that V is a subcover of U if V C U; we
say that V is inscribed in U if for any V' € V there exists a U € U such that V' C U; we say
that V is strongly inscribed in U if for any V € V there exists a U € U such that V C U.

An open cover U of M is called compact if the closures U are compact for all U € U
and is called locally finite if any point p € M has a neighborhood V such that only finite
number of intersections V NU,U € U is non-empty.
1.3.3.3.3. Countable open covers.

PROPOSITION 1. For any open cover U of M there exists a compact countable open
cover of M strongly inscribed in U .

ProoF. Let Wy be the subset of W consisting of those W € VW whose closures are
contained in sets from U:

Wo={WeW|3U eU,W CU}.
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Let us prove that W is a cover of M. Let p € M. Then p € U for some U € Y. But since
U is a union of sets from W, there exists a W € W such that p € W C U. Let W = ¢(dg #)
(see the definition of W). Then ¢~ !(p) € d,. 7, and hence ¢~ !(p) € d,., for some positive
rational 7 < 7. Put W = ¢(d,,.). Then p € W,W € W, W C U, that is W € W,. Hence,
W) is a cover. It is countable, compact and strongly inscribed in ¢ by construction.
PROPOSITION 2. Any open cover U of M contains a countable subcover.

PROOF. According to Proposition 1, there exists a countable open cover V of M
inscribed in Y. For V € V fix a Uy € U such that Uy D V. Then (Jy, .y Uv D UyepV =
M, that is, {Uy } is a cover of M. It is a countable subcover of U.

1.3.3.3.4. Paracompactness.

THEOREM. For any open cover U of M there exists a compact locally finite cover
strongly inscribed in U.

This property of M (less the assumption of compactness for the subcover) is called
the paracompactness.

PROOF OF THEOREM. Let Wy = {W; = ¢;(ds, r,)} be the compact countable cover
of M strongly inscribed in U as constructed in the proof of Proposition 1 in 1.3.3.3.3. For
0<t<1,put W, = ¢i(ds, tr;). Furthermore, put

1—1

. U WLl,Ql—i) - WZ - U Wk71_2k7i

k=1
/ [
/ |
/ \
/ X_/
/ /
4
\ / /
\ / [
2 |
\ 2 \
N AN\
Vi R —~
v

(this construction is shown schematically on the picture above). We will prove that V =
{Vi} is a compact locally finite cover strongly inscribed in «. We have four statements to
prove (of which three are totally trivial).

(1) V is a cover. Let p € M and let i = min{j | p € W;}. Then p € Wy, p ¢ W), for
k <, hence, p ¢ Wy, 1_or—: for k < i, hence, p € V.

(2) V is compact. Vi C W;. Since W, is compact, V; is also compact.

14



(3) V is locally finite. Let p € M. Choose a W; = @;(ds,.r,) 2 p; let y = o5 ' (p).
Then there exist a neighborhood G' C d,, ,, of y and a positive integer j such that G C
dy; (1—2—jyr;- Let V = @;(H); then V is a neighbourhood of p and V' C W, ;_5-;. Hence,
if m > 1+ 7, then

Vin =W — (..UW, 1 2i-m U..)

is disjoint from V C W; 1 _9-; since 1 =277 <1 —-2"" (i —m <i— (i +j) = —j).

(4) V is strongly inscribed in U, because it is inscribed in VW which is strongly inscribed
inl.

1.3.3.3.5. Shrinking covers.

PROPOSITION. Let U = {U;} be a countable compact locally finite open cover of M.

There erists a (countable compact locally finite) open cover V = {V;} of M such that
V, CcU; for allu.

REMARK. Actually this is true for any open cover of M, neither of the assumptions
of compactness, countability, and local finiteness is needed.

PROOF. Assume that for some n > 1 we already have open sets Vi,..., V1 such
that V; C U; and Vq,...,V,-1,U,, Upy1,... cover M. (For n = 1 this assumption is

empty and holds automatically.) Let F'= M — <<Uz<n Vi) U (UDn Uz)) Since the

sets Vi,i < n, U;,i > n, and Uy cover M, the set F' is contained in U,. Since U, is
compact, F' is also compact. Hence, there exists an open set V such that FF Cc V.,V C U,
(see Proposition 2 of 1.3.3.2.3); take this set for V,,. Since

M=FuU ((UM %) U (UM U)) = ((Ugn Vi) Y (Um U)) ’

the sets Vi,...,V—1, Vo, Ups1,Upyo, ... cover M, which completes our induction: we
obtain the sets Vi, Vs, ... which satisfy the above assumption for each n. All we need to
check is that these sets cover M. Let p € M, and let n = max{i | p € U;} (the cover U; is
locally finite). Since the sets Vi, ..., Vy,, Ups1, Upya, ... cover M and p does not belong to
any of Uy, 41,U,42, ..., it should belong to one of Vi,...,V,,, and, thus, to some V.

1.3.3.4. Partitions of unity.

Let f: M — R be a non-negative (f(p) > 0 for all p € M) smooth function on M.
Define the support of f as the set supp M = f~1(0,00); in other words, p € M does not
belong to supp M if and only if f is equal to 0 in some neighborhood of p.

A family {F,} of closed subsets of M is called locally finite, if every point p € M
possesses a neighborhood V' such that at most finitely many intersections V N F,, may be
non-empty.

LEMMA. The union F =, Fa of a locally finite family of closed sets is closed.

PRroOOF. Let p € M—F. By definition of a locally finite set, there exists a neighborhood
V of p and a finite set a1,...,ay such that VN FE, =0, if « # aq,...,ay. Put U =
vV — Uﬁvleai. The set U is open and p € U C M — F. Thus, M — F is open and F' is
closed.
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A family {f, | @ € A} of non-negative functions on M is called locally finite, if the
family supp f, is locally finite; in other words, the family f, is locally finite, if any point
p € M possesses a neighborhood V' such that all the functions f,, with a possible exception
of finitely many of them, are equal to 0 within V. Obviously, if {f, | « € A} is a locally
finite family and B C A then the sum fp = Y . fo is well-defined and is a non-negative
smooth function.

THEOREM. Let U be an arbitrary open cover of M. There exists a locally finite family
of non-negative smooth functions {fu | U € U} such that

(1) supp fu C U for any U € U;
(2) ZUeL{fUZl'

A family of functions with these properties is called a partition of unity subordinated
to U.

ProOF OF THEOREM. CASE 1: U is countable, compact and locally finite. According
to Proposition in 1.3.3.3.5 (applied twice), there exist open covers V = {V; | U e U}, W =
{Wy | U € U} such that Vi € U, Wy for all U € U. According to Proposition 2 in
1.3.3.2.3, there exist smooth functions gy on M with values in [0, 1] such that gy is 1 on
Wy and 0 outside of Viy. The family {gy} is locally finite (suppgy C Vi C U, and the
cover U is locally finite), and the sum G = ), gu is positive (actually, G > 1, since for
each p e M, p € Wy = fu(p) =1 for at least one U). Put fy = 95; the functions fy
satisfy conditions (1) and (2) of Theorem.

CASE 2: general. Let U be an arbitrary open cover of M. According to Theorem
in 1.3.3.3.4, there exists a countable compact locally finite cover V inscribed in Y. For
V €V fix Uy € U that contains V. As we already know (Case 1), there exists a partition
of unity, {hv} subordinated to V. For U € U, put fu = >y, hv. These are smooth

functions taking values in [0, 1]. Also, supp fy C UV’UV:U supp gy = UV’UV:U supp gv C
Uv.oy—v V C U (we use here Lemma) and 3, fu = >y Dy, —v 9v = 2y v = L.

COROLLARY 1. Let M be a smooth manifold, I C M be a closed set and U C M be
a neighborhood of F', that is, an open subset of M containing F'. There exists a function
on M such that f =1 in some neighborhood of F' and f = 0 in the complement of U.

REMARK. Compare with Proposition 2 in 1.3.3.2.3.

PROOF OF COROLLARY 1. Let V.= M — F. Then {U, V'} is an open cover of M. Let
{f, g} be a partition of unity subordinated to this cover. Then f is 0 outside U and g is
0 outside a closed set contained in V', hence is 0 in some neighborhood of F'. Therefore,
f=1-—gis 1 in some neighborhood of F.

COROLLARY 2. Let U,V be open subsets of a manifold M such that V C U. For any
smooth function g on U there exists a smooth function h on M such that g and h agree on

V.

Proof. Corollary 1 yields a smooth function f on M which is 1 on V and 0 outside

U. Take h={ /9 MU,
axe {0 outside U.

2. Tangent vectors and vector fields.

2.1. Tangent vectors.
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2.1.1. Definition.

Let M be a smooth manifold, and let p € M. A tangent vector to M at p is, by
definition, a linear map £:C*°(M) — R such that, for any f,g € C>*(M), &(fg) = £(f) -
g(p) + f(p) - £€(g). Tangent vectors to M at p form a real vector space (with respect to
natural operations of addition and multiplication by real numbers); this vector space is
called the tangent space to M at p and is denoted as T}, M.

PROPOSITION 1. For any § € T,M and any constant (function) c, £(c) = 0.

Proof. {(c) =&(c-1) =&(c) - 14 c-&(1). On the other hand, the linearity of £ shows
that £(c-1) = c¢-£(1). Hence, {(c) -1 =&(c) = 0.

PROPOSITION 2. If f = 0 in some neighborhood of p, then {(f) =0 for any & € T, M.

Proof. Let U be a neighborhood of p in which f = 0. Let g € C*°(M) be a function

such that g(p) = 0 and g = 1in M~ U. Then fg = [ and £(f) = £(fg) = &(/)gp) +
f(p)€(g) = 0 since f(p) = g(p) = 0.

COROLLARY. If f and g agree within a neighborhood of p, then £(f) = &(g).
This follows immediately from Proposition 2.

In particular, we can apply £ to functions defined only locally, in a neighborhood of
p: Corollary 2 in 1.3.3.4 shows that such a function, restricted to a smaller neighborhood
of p, can be extended to M, and Proposition 2 above shows that the value of £ on the
extended function does not depend on the extension.

2.1.2. Some lemmas from Analysis.

LEMMA. Let f € C®(R™) and f(0) = 0. Then there exist functions fi,..., fn €
C>(R™) such that

flxy,.. zn) =z1f1(zr, .o ) + oo fo(xr, .y zp).

Proof. Put )
of
i = tx) dt
fiw) = [ 5L
0
(x = (x1,...,2p)). The standard theorems of analysis show that f; are smooth functions.
Furthermore,

1
0 d
E xifi(xl,...,mn):/g xia—;i(txl,...,txn)dt:/Ef(t:cl,...,tmn)dt
0

t=1

= f(z1,...,xn) — f(0,...,0) = f(z1,...,2n)-

= f(txy, ... tay,)
t=0

GENERALIZED LEMMA. Let U be an open subset of R™, p = (p1,...,pn) € U, f €
C>(U), f(p) = C. Then there exist functions fi,...,fn € C°(R™) such that, in some
neighborhood of p in U,

[y, mn) = CH (w1 —p1) (@, an) + oo+ (@0 = po) (@1, - @)
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Proof. Using Corollary 2 in 1.3.3.4, find a function g € C*> which agrees with f in
some neighborhood of p. Then apply Lemma to the function

h(z1,....,xn) =9g(x1+p1,.. -, Tn +pn) = C

(obviously, h(0,...,0) =0):

h(z1,...,2,) = inhi(acl,...,mn),
g(x1, .. ) =CHhlxy —p1,. .20 —pp) = C+ Y (@i — pi)hi(x1 — p1, ... Tn — Pn)

and we can put f;(z1,...,2,) = hi(x1 —p1,...,Tn — Pp).
2.1.3. Coordinates of tangent vectors.

Let {x1,...,z,} be alocal coordinate system in a neighborhood U of p with p having
coordinates (pi,...,pn). A smooth function on M may be regarded in U as a smooth
function of x4, ..., z,. Obviously, the map 9;: C>*(M) — R where 9;(f) is the value of the

partial derivative at p, is a tangent vector to M at p.

7

THEOREM. The vectors 0O1,...,0, € T,M form a basis of T,M; in particular,
dim T, M =n = dim M.
Proof. (1) 01,...,0, are linear independent. Indeed, the coordinates z1,...,x, are

1, ifi=
0, ife+#j.
then 0 = (a101 + ... + an0y)(z;) = @101 + . .. + a0, = a; for each j.

(2) Any ¢ € T,M is a linear combination of 9;’s. Put a; = &£(z;) and prove that
€ =>a;0;. Indeed, any f € C>°(M) locally is f(x1,...,x,), and, according to Generalized
Lemma above,

smooth functions in U. Obviously, 0;(z;) = d;; = { Js If a0 +...+a,0, =0,

f(xlv"'v +Z — Di flev"'vxn>-

Hence

&(f) = +Z€ —pi)fi(z1, ..., @)
—0+Z —pi) fi(p) + (i — pi)E(S3))

:Z ai—Ofi +0 gfz Zazfz

On the other hand,

0i(f) = 0:(f(P) + > 0i((x; — p;) fi(x1, ..., 20))
=0+ (0i(z; — p)fi(p) + (pj — pi)0i(f;)) = Z@jfj(p) = fi(p)

and

(32, @0) (1) =D asfiv)
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Hence, (f) = <Z'ai8i) (f) for any f € C>°(M), that is, £ = > a;0;

For ¢ € T,M, the numbers a;, such that £ =) a,;0;, are called coordinates of { with
respect to the local coordinate system z1, ..., z,.
2.1.4. Coordinate change.

Let z1,...,x, and x/,...,2, be two local coordinate systems in neighborhoods of

p, let £ € T,M, and let, correspondingly, ai,...,a, and ai,...,a, be the coordinates of

0
¢ with respect to the two coordinate systems. Then aj = £(z}) = >, a; 8796; =

T=p

is the transition matrix from

02 ()

o'
E Ti (p)a;. In other words, the Jacobian matrix 3
L

Ox;
{al, coapt to{adl,...,al}.
This observation gives rise to the classical, coordinate definition of a tangent vector. A
tangent vector to M at p is a function assigning to each local coordinate system a sequence
of n numbers, ay,...,a,, which are transformed according to the formula when one local
coordinate system is replaced by another one.

2.1.5. The manifold of tangent vectors.

Let M be a smooth n-dimensional manifold, and let TM = Upe v IpM be the set of
all tangent vectors of M. Let (U, ) be a chart of M, and let x1,...,z, be corresponding
local coordinates in ¢(U). The product U x R™ C R” >< R™ = R?" is an open set in

R2". Consider $:U x R™ — TM, &(q, (a1, ..., Zaz 830 ) € T,M where p =

©(q). The pair (U x R™, @) is a 2n-dimensional chart of TM Moreover, these charts
are compatible: if (U, ), (V,4) are two charts of M and J is the Jacobian matrix of
the map 1 ~p: o7 1Y(V) — ¢~ Lp(U), then g71p(V x R™) = o~ 1p(V) x R", 713U x
R") = ¢ 1p(U) x R", and the map @1 acts as (¢, a) — (o ~1(q), Ja); obviously, it is
smooth. Thus, T'"M becomes a smooth 2n-dimensional manifold. Obviously, the projection
m:TM — M, n(T,M) = p, is a smooth map.

2.2. Differentials of smooth maps.
2.2.1. Definition.

Let h: M — N be a smooth map between smooth manifolds, let p € M, and let
q = h(p) € N. Define a map dph: T, M — T,N by the formula

((dph)(€))(f) = &£(f o h) where & € T, M, f € C*(N).

Certainly, we need to check that n = (d,h)(&£) belongs to T,N; obviously, in is a linear
map C>*(N) — R, and

n(fg) =&(fgoh) =&((foh) (goh))
=&(foh)-(goh)(p)+ (foh)(p) -&(goh)
=&(foh)-(g(h(p)) + (f(h(p))-&(goh)
=n(f)-9(q) + f(a) - n(g)



Obviously, the map d,h: T,M — T, N is linear. It is called the differential of the smooth
map h at p € M. It is also obvious that d,idy, = idr,n and, for any smooth maps
h:M — N and k: N — P, d,(koh) = dyp)k o dyh.

The maps d,h compose a smooth map dh: TM — TN, and again didy; = idrys and
d(k o h) = dk o dh.

2.2.2. Differentials of diffeomorphisms and open embeddings.

The last statements imply that if / is a diffeomorphism, then d,h is an isomorphism
for any p. It is clear also that if U is an open subset of a manifold M, then T,,U = T,,M for
any p € U. Together, these two propositions show that if h: U — M is an embedding with
the image open in M, then d,h is an isomorphism for any p € U. This can be applied,
in particular, to the case of charts of M. First of all, for any p € R", we may identify
T,R™ with R™ using the correspondence a10; + ...+ an0p < (a1,...,a,). This implies
the identification 7,U = R™ for any open U C R™ and any p € U. Now, if (U, ¢) is a chart
of M, then dyp:T,U — T, )M becomes an isomorphism R" — T,y M, which yields a
basis in T, M. This is the basis in the tangent space corresponding to a chart (a local
coordinate system) as was described in 2.1.3.

For the manifolds of tangent vectors, the first statement means that if h: M — N is
a diffeomorphism, that dh: TM — TN is also a diffeomorphism. Then we observe that
TR™ = R™ x R™ = R?" and, for an open subset U of R”, TU = U x R™. For a chart (U, ¢)
of M, the differential dy is an open embedding U x R™ — T'M; this is a chart of TM as
it was described in 2.1.5.

2.2.3. Differentials of embeddings.

Since for m < n, R™ is a subspace of R”, we may regard, for any p € R™, the tangent
space T),R"™ as a subspace of the tangent space T,,R". Passing to open subsets, we see that
for any open subset U of R™ and for any p € U NR™, T,(U NR™) is a subspace of T),U.
Applying the differential of any chart of a smooth n-dimensional manifold N covering a
point ¢ of an m-dimensional submanifold M of IV, we conclude that T, M is a subspace of
T,N. This inclusion of T, M into T}, N is, obviously, the differential of the inclusion map
M — N, and hence it does not depend of the choice of charts.

Also, T'M is a submanifold of T'N.

A vector £ € TN is called tangent to M, if £ € T,M. There are two convenient ways
to identify vectors tangent to M.

PROPOSITION 1. A wector § € T, N is tangent to M, if and only if £(f) = 0 for any
function f € C*°(N) such that f|pr = 0.

Proof. Let i: M — N be the inclusion map. A vector { € T,,N is tangent to M, if and
only if & = (dpi)(n) for some n € T, M, that is, if and only if £(f) = n(f o i) = n(f|m)-
Thus, if € is tangent to M and f|yr = 0, then £(f) = 0. Conversely, let £(f) = 0, if
flar = 0. Any function g € C>°(M) can be extended locally, in a neighborhood of p,
to a smooth function on N (because any smooth function on R can be extended to a
smooth function on R™). Let g be this extended function. The value £(g) does not depend
on the choice of extension (because if §’ is another extension, then (¢’ — g)|gm= = 0 and

§(9") —&(9) =&(9" — g) = 0). Put n(g) = £(g) obviously, n € T,M and (dpi)(n) =&,
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PROPOSITION 2. Assume that M 1is described, at a meighborhood of p, by a non-
degenerate system of equations F; = 0,1 = 1,...,n —m (see 1.2.4.2 — 1.2.4.4). A vector
€ € T,N is tangent to M, if and only if E(F1) = ... =&(Fp—m) = 0.

Proof. Let V.= {{ € T,N | {(F1) = ... = {(Fr—m) = 0}. We need to show
that V' = T,M. Since Fj|ps = 0 for all 4, Proposition 1 implies that T,(M) C V. Let
{z1,...,2,} be alocal coordinate system on N in a neighborhood of p. The non-degeneracy
of the system {F; = 0} means that there exist numbers 1 < ky < ... < kyp_, < n such
oF;

Tl
V. Hence, COd].iHlV >n—m,dimV <m,and V =T,M.

EXAMPLE. A vector (aq,...,an41) = a101 + ...+ apy10,41 is tangent to the sphere
S Cc R™1 at a point (p1,...,pne1) € S™ if and only if the function (a10; + ... +
Ani10n41)((21)*+ .o .+ (Tne1)? —1) = 2(a121 + . . . + @pi12Tn 1 vanishes at (p1, ..., Puy1),
that is, if ayp1 +. . .+ ansr1Pnr1 = 0, that is, if the vector (aq,. .., an41) is orthogonal to the
radius-vector (pi,...,pne1). We can also describe T'S™: it is a submanifold of TR™*! =
R x R = R27*2 composed of (p,a) € R" ™ x R™*! for which [|p|| = 1, (p,a) = 0.

Notice in conclusion, that since any embedding is a composition of a diffeomorphism
and an inclusion of a submanifold, the differential d,h of any embedding h: M — N is a
monomorphism (one-to-one) and the differential dh: TM — TN is an embedding.

that det

# 0. This shows that no linear combination of Jy,,...,0k,_, belong to

2.2.4. Differentials of immersions.
Since immersions locally are embeddings, differentials of immersions are also mono-
morphisms. Actually, we have more.

PROPOSITION. A smooth map h: M — N s an immersion, if and only if d,h is a
monomorphism for each p € M.

Proof. We need to prove that if f: M — N, dimM = m,dim N = n is a smooth
map and d,M is a monomorphism for each p € M, then f is an immersion. Take a

point p € M and choose local coordinates (aka charts) {z1,...,z,} and {y1,...,y,} in

neighborhoods of p and ¢ = h(p). With respect to these coordinates, h is given by functions

yj = hj(z1,...,2m), j = 1,...,n. The fact that d,h is a monomorphism means that the
h. ~

m X n matrix J = ' 3 || has a m x m submatrix J which has a non-zero determinant at p
T

and hence in some neighborhood of p. Without loss of generality, we can assume that J is

formed by first m columns of J. By Inverse Function Theorem, x4, ..., x,, can be locally

expressed as functions of y1, ..., ym:z; = ki(y1,...,ym), i = 1,...,m. Consider functions

Z1y---y2n Of y1,..., 9y, in a neighborhood of ¢:

2j =kij(y1,...,ym) for j <m, z; =y; —hj(ki(y1,- - Ym), s km (Y1, ..., ym)) for j > m.

T-1
The Jacobian matrix of z ...,z, with respect to yi,...,y, has the form [J* ?],

and it has, in a neighborhood of ¢, a non-zero determinant. Hence, zq,..., 2, provide
a new local coordinate system (a new chart of N) in a neighborhood of ¢q. Within
this chart, a point (yi,...,yn) < (21,...,2,) belongs to h(M) if and only if y; =
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hi(ki(yis- - Ym), - s km(Y1,- -3 Ym)), 5 = 1,...,n. But for j < m this holds automati-
cally, while for j > m this means precisely that z,,41 = ... = 2, = 0. Thus, h locally is a
diffeomorphism onto a submanifold, that is, h is an immersion.

2.2.5. Immersions and embeddings.

We know that embeddings are 1—1 immersions. On the other hand, multiple examples,
like the one below, show that 1 — 1 immersions are not necessarily embeddings.

Still the following is true.

PROPOSITION. A 1 — 1 immersion of a compact manifold into any other manifold is
an embedding.

Proof. Let h be a 1 — 1 immersion of a compact m-dimensiolnal manifold M into an
n-dimensional manifold N. By definition of an immersion, for every point p € M, there
exist a neighborhood U C M of p and a chart (V) of N such that »=*(h(U)) = VNR™.
Since M — U is compact, h(M — U) is closed. Let V' =V — ¢~ Y(h(M — U)). It is open,
and P H(A(M)NV' =4y~ (h(m —-U)U f(U)) NV =4 1 (W(U))NV'=V'NR™. Thus,
V' 1]y is a chart required by definition of embedding.

2.2.6. Velocity vectors.

A (parametrized) curve 7y in a manifold M is a smooth map of a finite or infinite open
interval I C R into M. If tq € I, t is the coordinate on the line, and p = v(tg), then the
vector dy,y(d/dt) € T, M is called the velocity vector of v at p. Notation: (o).

2.3. Vector fields.
2.3.1. Definition.

A wector field X on a manifold M is a linear map X:C>®(M) — C*(M) satisfying
the condition X (fg) = X(f)g+ fX(g) for any f,g € C>(M). (In the algebraic language:
a vector field on M is a derivation of the ring C>°(M).) Obviously, vector fields on M
compose a (generally, infinite dimensional) vector space; it is denoted as Vect(M).

It is also possible to multiply vector fields by functions. In the algebraic language,

Vect(M) is a module over the ring C*>°(M).
2.3.2. Values at points.

Let X € Vect(M), and let p € M. The map X,,:C>®(M) — R, X,(f) = (X(f))(p) is
a vector in T, M. This vector is called the value of X at p. It is clear that if X,, =Y, for
all p € M, then X =Y. Thus, the function p — X, determines the vector field X.
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PROPOSITION. For any vector field X, the map M — TM, pw— X, € T,M C TM
is smooth. Moreover, any smooth map M — T M sending each point p € M into T,M 1is

determined by a vector field in the above way. Thus, vector fields on M are the same as
smooth maps X: M — T M such that mo X = idyy;.

The proof is left to the reader who is advised to postpone it until Section 2.3.4 has
been read.

2.3.3. Locality.

LEMMA. If a function f € C*°(M) vanishes in an open set U C M then X (f) vanishes
in U for any X € Vect(M).

Proof. Let p € U. Choose a function g € C>°(M ) such that g(p) =0, g|p—v = 1. Then
fg=fand X(f)=X(fg) = X(f)g+ fX(g) which vanishes at p since f(p) = g(p) = 0.

PROPOSITION. The restriction X (f)|y is determined by the restriction fly.

Proof. 1If fly = g|lu, then (f — g)lu = 0, hence X(f — g)|lv = 0, hence (X(f) —
X(9))lu =0, hence X(f)|v = X(g)uv.

This shows that we can apply vector fields to functions defined only in open subsets of
M, and the domain of X (f) will be the same as the domain of f. Indeed, let f € C*°(U).
For a p € U choose open sets V, W such that p € V,V € W,W C U, and then choose a
function g € C*°(M) such that g =1in V and ¢ = 0 in M — W. Then the product fg is
defined (and smooth) in the whole manifold M, and we put (X (f))(p) = (X(fg))(p). The
proposition above implies that this does not depend on any choices, so X (f) becomes a
valid function in U. Moreover, the equality X (f) = X (fg) holds in V', so X (f) is smooth.
This map C*(U) — C*>*(U) is a vector field on U. We denote it as X |y .

2.3.4. A coordinate presentation of vector fields.

Let X € Vect(M), and let x1,...,z, be local coordinates in some U C M. Then
Z1,...,T, are smooth functions on U, and hence X(z;) are also well defined smooth
function on U (see 2.3.3). Put X (z;) = X;.

PROPOSITION. F C*U), X = X; )
or amy § € C(0), X(5)= Y %2
=1
of
Proof. For any p € U, (X(f))(p) = X, (f) =2, Xp(xi)%(p) (see 2.1.3).
This shows that any vector field is presented, in local coordinates zi,...,x,, as
0
> Xia—. If 27, ...,z is another local coordinate system, then, in the intersection of the
X
0 0
domains of the two systems, X is presented both as ), Xia— and as ), X’/F In this
ox!
int tion, X! =Y. — X,
intersection, X =3, d,

This observation gives rise to a coordinate description of vector fields, similar to that
of tangent vectors given in 2.1.4. A vector field on M is a function assigning to each
local coordinate system z', ..., 2" a sequence of n smooth functions in the domain of the

or
coordinates, X1',..., X™ which are transformed by the formula X! = > i ax; X7 under
T

the coordinate change.
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2.3.5. Commutators.
PROPOSITION 1. Let X,Y be vector fields on M. Then

[X,Y]=XoY —Y 0 X:C®(M) — C®(M)

1s also a vector field.
Proof.

(X, Y](fg) = X(Y(fg)) - Y(X(fg))

X(Y(flg+ fY(9)—Y(X(f)g+ fX(9))

= X(Y(f ))9+Y( )X (g)+ X ()Y (9) + fX(Y(9))
Y(X(f))g—X(f)Y(9) —Y(f)X(g9) - fX(Y(9))
(X(Y(f) =Y (X(f)g+ F(X(Y(9) — X(Y(9)))

= [X,Y](f)g + fIX,Y](g)

REMARK. In general, the compositions X oY and Y o X are not vector fields; only
their difference is.

PROPOSITION 2 (coordinate presentation of commutators). If, with respect to some

0
local coordinate system {x1,...,xzn}, X =), Xia and Y =3 Yj— [y , then [X,Y] =
xI; J

oYy 00X} )

0
>k Zk('?—a:k where Zi, =), (XZ- o Y; .

Proof: a direct check (left to the reader).

ProprosiTiON 3. Commutators have the following properties.

(i) The operation X,Y — [X,Y] is bilinear (over R).
(i) [X,Y]=-[Y, X].
(iil) [[X,Y],Z]+ Y, Z],X]+[[Z,X],Y] =0.
(iv) [fX, Y] = fIX, Y] =Y (f)X.

The proof is again left to the reader.

REMARK. Property (iii) is called Jacobi identity. It serves as a substitute to the
associativity property which, in general, does not hold for commutators. In the alge-
braic language Properties (i)—(iii) mean that Vect(M) is, with respect to the vector space
operation and the commutator operation, a Lie algebra.

2.3.6. Integral curves and flows.
2.3.6.1. Integral curves.

Let X be a vector field on M. A curve v on M is called an integral curve (or trajectory)
of X if for any ¢ in the domain of y the velocity vector of v at y(t) is X,(;). In the language
of Analysis, a vector field is a (system of) differential equation(s) and an integral curve
is a solution. Indeed, in local coordinates x1,...,x,, the vector field X is presented as

> Xz-a— and the curve v has parametric equations x; = z;(t). The velocity vector of
T
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v at y(to) is di,y(d/dt) = %;(tp), and ~ is an integral curve of X if and only if &;(ty) =
Xi(x1(to), ..., xn(tg)) for i = 1,...,n, in other words, if z1(t),...,x,(t) is a solution of
the system z; = X;.

PROPOSITION 1. Let X be a vector field, and let p € M. For some € > 0, there exists
a unique integral curve v: (—e,e) — M of X with v(0) = p.

This is the theorem of the existence and uniqueness for solutions of ODE.

Notice that Proposition 1 is local: if we try to expand the integral curve beyond
the interval (—e,¢), we encounter many different possibilities: we may get a curve R —
M whose image is a one-dimensional submanifold on M closed in topology of M and
diffeomorphic to R; or this curve may go to infinity in finite time (in any direction); or
it may be closed (diffeomorphic to S*; or it may be winding around a “limit cycle”; or it
may end up at a point where X vanishes; or the closure of its image may be a torus of
some dimension; or something else.

The choice of € in Proposition 1 may be partially controlled.

PROPOSITION 2. Any g € M has a neighborhood U such that for all p € U the number
€ from Proposition 1 may be taken the same. If M is compact, then € may be taken the
same for all p € M.

The first is obvious, the second follows from the definition of compactness. Actually,
as we will see in next Section (Proposition 2 of 2.3.6.2), in the compact case € can be taken
arbitrary (or infinite).

2.3.6.2. Flows.
Let M be a smooth manifold and X be a vector field on M.

PROPOSITION 1. For each point g € M there exist an € > 0, a neighborhood U of q,
and a family of open embeddings {x1:U — M | —e <t < €} such that

(1) the map ®:U x (—e,e) — M, ®(p,t) = @i(p) is smooth;
forallpe M

(2) polp) = p;

(3) the curve vp: (—e,e) — M, v,(t) = @i(p), is an integral curve of X;

(4) if e(p) € U and [t + u| < € then @u(pi(p)) = Pr+u(p)-

Proof. The existence of integral curves 7,: (—¢,e) — M for p in some neighborhood
of ¢ with v,(0) = p is stated by Proposition 2 of 2.3.6.1. Put ¢:(p) = v,(t). We already
have Properties (2) and (3). Property (4) holds because of the uniqueness of an integral
curve: both u — @, (pi(p)) and u — i1, (p) are integral curves of X with value ¢;(p)
for w = 0. The smoothness of the map (p,t) — :(p) (Property (1))is the theorem of the
smooth dependence of solutions of ODE on the initial conditions. At last, to prove that
p¢’s are open embeddings, we may need to shrink both U and e: take a neighborhood
V C U of ¢ and a positive ¢’ < e such that ¢(V) C U for |t| < ¢'. Then for all such ¢
the maps ¢;: V — (V) and ¢_;: (V) — V are mutually inverse smooth maps. Hence,
they are diffeomorphisms, and ¢;(V') is open.

PROPOSITION 2. Let M be compact. Then for any X € Vect(M) there exists a family
of diffeomorphisms {py: M — M |t € R} such that
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(1) the map ®: M x R — M is smooth;
(2) ¢t 0 Pu = Ptiu;
forallpe M,

(3) ®o(p) = p;

(4) the curve vp: R — M, ~v,(t) = @i(p), is an integral curve of X.

Proof. The existence of integral curves ~,: (—¢,e) — M with ~,(0) = p is stated
by Proposition 2 of 2.3.6.1, and the only thing we need to add to the arguments of the
previous proof is the extendability of the family ¢; to all real ¢. To do this we simply
define o; with arbitrary ¢ as (¢y/,)" where [t/n| <.

The family {¢: M — M} is called the flow generated by X. We will also refer to the
family ¢; of open embeddings from Proposition 1 as to a local flow.

3. Critical points and critical values.

The word “generic” is almost as common (and almost as informal) in Mathematics
as the word “obvious”. We routinely state that a generic quadratic equation has two
complex roots, that a generic curve in space has no inflection points, that a generic line (in
space again) has precisely one common point with a given plane, and so on. Sometimes
this has a formal sense (say, something occurs with a probability one), sometimes this
simply discards certain events as unlikely. In differential Topology, the most trusted tool
of rigorous establishing of genericity is provided by results related to the notions of critical
and regular points and values.

3.1. Definitions.

Let M, N be smooth manifolds, let dim M = m, dim N = n, and let f: M — N be a
smooth map. A point p € M is called regular with respect to f if rankd,f = n; a point is
critical, if it is not regular. For example, p € M is a critical point for a function f: M — R
if d,f = 0. Remark, that if m < n, then every point of M is critical with respect to f;
to avoid this, visibly ugly, feature of the notion, people sometimes replace the condition
rankd,f = n by rankd,f = min(m,n); but for our purposes, the definition above is the
best.

A point ¢ € N is called a critical value of f, if ¢ = f(p) for some critcal point of f. A
point ¢ € N is called a regular value of M, if it is not a critical value of f. It may seem
ridiculous, but according to this definition, every point of N — f(M) becomes a regular
value of f (that is, a regular value of f is not necessarily a value of f).

THEOREM. If ¢ € N is a regular value of a map f: M — N, then f~1(q) is a
submanifold of M of dimension dim M — dim N.

Proof. Let (V, 1) be a chart of N such that 0 € V and ¢ (0) = ¢q. Then the coordinate
functions of the map F: f~1(x(V)) — V, F(p) = ¥~ 1(f(p)) form a system of dim N
equations in a neighborhood of f~!(q) such that the set of solutions is f~1(¢q) and the
gradients of left hand sides (with respect to local coordinates in M) are linearly independent
at every point of f~1(q).

3.2. Sard’s theorem.

This is one of the best known “general position theorems.”
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For an arbitrary map f: M — N, can we expect that the set of regular point is in
some sense ample? No, if, say, dim M < dim N, then there are no regular points at all.
Another example: for a constant map M — N, whatever the dimensions of M and N are,
all points are critical. But for both these examples, the set of critical value is very thin:
the image of a smooth map of a lower-dimensional manifold into a higher-dimensional one
cannot be expected too big; the more so, for the constant map, there is only one value.

Sard’s theorem provides a strong restriction for the set of critical values of a smooth
map, rather than for the set of critical points. There are several statements. The weakest
one (however, sufficient for many applications) states that any smooth map f: M — N
(we always assume that dim N > 0) has at least one regular value. A stronger statement
says that the set of regular values is dense in N. There are two textbook statements of
Sard’s theorem. We formulate both.

THEOREM 1. For any smooth map f: M — N, the set of critical values has measure
Z€r0.

THEOREM 2. If M is compact, then the set of regular values of f is a dense open
subset of N; in general case, the set of reqular values of f is a countable intersection of
dense open subsets of N.

REMARK. As usual, “smooth” means C*> for us. Actually Sard’s Theorem is true for
finitely differentiable maps, but the number of continuous derivatives must be specified.
Theorems 1 and 2 hold for C" maps, if r > max(dim M — dim N,0). There exists an
example (due to D. Men’shov) of a C! function R? — R for which every real number is a
critical value.

In the next section, we will give a proof of Theorem 1 in a trivial, but important, case
of dim M < dim N. A full proof of Theorem 1 (borrowed from the book “Topology from
the differential viewpoint”) is contained in Appendix.

3.3. Proof for dim M < dim N.

Denote the set of critical value of a smooth map g as cv(g).

First of all, it is known that the union of countable many sets of measure zero is
again a set of measure zero. Since both manifolds M and N have countable atlases,
the set of critical values of f is a countable union of sets Cyyy (v,p) = Y(ev(ypto fo
e Y (V) — V) where (U, @), (V,1) are charts of M, N. Thus, we can restrict
ourselves to smooth maps between open subsets of Euclidean spaces; moreover, we can
assume both bounded. Let g:W — Z is a smooth map between bounded open sets
W Cc R™, Z C R™. If m = n, then critical points of g are the points where the determinant
of the Jacobian matrix J, of g is zero. Fore > 0,let B, = {p € W | |det J,| < €}; thisis an
open subset of W. Then meas(cv(g)) = meas(g({det J, = 0})) < vol(g(B.)) < evol(B;) <
e vol(W), which certainly means that meas(cv(g)) = 0. The case m < n (essentially, much
more simple than the case m = n) is reduced to the case m = n. We just replace the map
g: W — Z by the composition g = gom: W x d — Z where d is an open ball of dimension
m —n and 7 is the projection of W x d onto W. The critical value of g (same as values of
g) is the same as critical values of g (same as values of g), and we can apply the previous
result.
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It should be added that, at least in the case of m < n, it is very easy to prove Sard’s
theorem in the form of Theorem 2; we do not need this.

3.4. First application: the embedding theorem.

THEOREM (H. Whitney). Any compact n-dimensional manifold M can be embedded
in R2"tL and immersed into R*™. Moreover, any smooth map M — R™ may be C*®
approximated by an embedding, if m > 2n + 1 and by immersion, if m > 2n.

Proof. First, we will establish that M can be embedded into some Euclidean space.
The proof of this result (which, actually, is the most important part of Whitney’s theorem)
does not use Sard’s theorem.

Let {(U;, 1), 7 =1,...,7} be a finite atlas of M, and x;1,...,Zin: ¢;(U;) — be the
corresponding local coordinates (that is, z;(¢i(z1,...,X,)) = zy for all (zq,...,2,) €
U;). Choose some open cover {V;} of M such that V; C ¢;(U;) and functions Z;,: M — R
such that Z;;, = x;; within V; (see 1.3.3.3.5).

Let V = ;_,(V;xV;) C M xM; obviously, V is an open neighborhood of the diagonal
diag = {(p,q) e M x M | p=q} C M x M. For p,q € M, p # q, choose a smooth function
hpq: M — [0,1] such that Hyq(p) = 1, hpg(q) = 1. Let Spq = hyt (5,0], Tpg = byl [0, 5);
notice that if p’ € S, and ¢’ € T}, 4, then hy, 4(p') # hp o(¢)-

The open sets V, Spq X Tpq cover M, xM (if p = q, then (p,q) € V; if p # g, then
(p,q) € Sp,q xTpq). Since M x M is compact, this cover has a finite subcover, {V, S}, 4, x
Tp,q;» 3 =1,...,5}. CLAIM: nr + s functions

determine an embedding F: M — RN, N = nr + s.

In virtue of Propositions in 2.2.4 and 2.2.5, to proof this, we need to check that F'
is 1 — 1 and d,F' is a monomorphism for every p € M. Proof of the first. Let p # q. If
p,q € V; for some ¢, then Z;;(p) # T (q) for some k (local coordinates z;; distinguish p
and q). If (p,q) ¢ V, then (p,q) € Sp,q; X Tp,q, for some j, and hy, 4, (p) # hyp,q,(q). Proof

of the second. If p € V;, then the composition G = { M L, Rt 5 R™} where

77-(1'17 e 7xn7“+s) = (:En(ifl)Jrl? AR xnz)

is determined by the fucntions z;1, ..., Z;, and hence coincides within V; with the compo-

sition V; C gofl(Ui) AR U; C R™. Since the latter is an embedding, d,G' = dp,)7 o dpF is
a monomorphism, and hence d,F' is a monomorphism.

Thus, we have an embedding F: M — RY™. Now we apply Sard’s theorem to reduce
N. We want to find a line ¢ in RY such that if 7p: RN — R¥~1! is a projection parallel to
this line, then 7, 0 F: M — R¥~! is an embedding (or an immersion). Consider the map
M x M — diag — RPN~! which sends (p,q), p # ¢, into the line parallel to the vector
F()F(q) (#0). If N > 2n+1, then dim(M x M —diag) = 2n < N —1 = dim RPY~! and,
according to Sard, the image 37 of this map has measure 0. Let Ty M C T'M consists of
tangent vectors to F'(M) of length 1; this is a manifold of dimension 2n — 1. Consider the
map T3 M — RPN~ which sends a vector v € T} M into a line parallel to v. If N > 2n,
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then dim Ty M =2n—1 < N —1 = dimRPV ! and the image ¥ of this map has measure
0.

If ¢ ¢ %, then myo Flis 1 —1 (me(F(p)) = me(F(q)) if and only if the chord [F(p), F(q)]
is parallel to ¢). If £ ¢ 3o, then m; o F' is an immersion (if the line through F(p) parallel
to £ is not tangent to F'(M), then 7wy is 1 — 1 on T, F(M)). Iterating such projections,
we get an embedding M — R?"*! and an immersion M — R?".

To finish the proof, we need to check the “Moreover” statement. Let h: M — R™ be
some smooth map. Consider the map h x F: M — R™Y where F is the map defined
above. Applying projections along lines as above, we can reduce h x F' to an embedding
M — R™, if m > 2n+1 or to immersion M — R™, if m > 2n. But the lines used in these
projections are chosen from dense subsets of projective spaces. Therefore we can make
the composite projection R™TY — R™ arbitrarily close to the projection of the product
R™ x RY onto the first factor ((x,y) — ). Then the composition of this map with h x F
will be arbitrarily close (in the C*° sense) to h. This completes the proof.

REMARKS. The assumption of compactness of M is not needed: the whole statement
holds for arbitrary manifolds. Only the first part of proof is significantly different for the
non-compact case. The same can be said about the real analytic case.

The Sard arguments work even in algebraic geometry. For example, every (non-
singular) projective complex algebraic variety of dimension n may be algebraically em-
bedded into CP?"*1, In particular, every complex algebraic curve may be realized as a
non-singular complex curve in the complex projective space, but not, in general, in the
complex projective plane. This is expectable: a complex algebraic curve may have an arbi-
trary “genus” g (that is, be diffeomorphic to a sphere with g handles), while a non-singular

curve determined in the complex projective plane by an equation of some degree d, and

d—1)(d—2
then the genus equals ( I )

In differential topology, there are many results concerning embeddings in Euclidean
spaces of smaller dimensions. For example, any manifold of a positive dimension n can be
embedded in R?" (but the approximation as stated above does not hold for such embed-
dings). If the (positive) dimension of a manifold is not a power of 2, or if is orientable,
then an embedding in R?"~! is possible. And so on.

3.5. Transversal regularity.

Sard’s theorem is not the only general position theorem in differential topology. For
an example of a different result (which is not an automatic corollary of Sard’s theorem,
although ultimately follows from it) we mention the “transversal regularity theorem” due
to R. Thom.

Let P be a submanifold of a manifold N. A map f: M — N is called transversely
regular (or t-regular) with respect to P, if for every point p € f~'(P) C M, Ty, N =
T¢pyN + dp f(T,M). For example, if P is one point then f is transversely regular with
respect to P if and only if P is a regular value of f.

THEOREM 1. If f is transversely regqular with respect to P, then f~(P) is a subman-
ifold of M of dimension dim M + dim P — dim N.

This theorem is similar to Theorem in 3.1, generalizes that theorem and is proved in
a similar way.
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THEOREM 2 (Thom). Every smooth map M — N may be C* approximated by smooth
maps transversely reqular with respect to P.

For example, if dim M < dim N — dim P, this means that every map M — N can be
approximated by maps whose image is disjoint from P.

4. Manifolds with boundaries.

4.1. Main definition.

Important notation:
R™ = {(z1,...,zp) | zn < 0}.

Let us repeat all said in Section 1.1 replacing R™ by R”™. With a minor exception
concerning orientations in the case of dim M = 1 (which we will discuss below, in 4.2.2),
everything makes sense. We need only to adjust the terminology. The words chart and
atlas may be replaced, if necessary, by the words 0-chart and 0-atlas. The word manifold
becomes manifold with boundary, or 0-manifold.

4.2. Interior and boundary. Relations between orientations.

4.2.1. Definitions.

Let M be an n-dimensional manifold with boundary. Among the charts (U, ) of
(the maximal atlas of) M there are charts with U open in R™ (that is, disjoint from
R"”~1 C R™). The union of images of such charts is denoted as Int M; it is a dense open
subset of M, and it is an n-dimensional manifold in the sense of our previous definition.
It is called the interior of M. The difference M — Int M = OM is an (n — 1)-dimensional
manifold (if {(U, )} is an atlas of M, then {(U NR"™! |ynrn-1)} is an atlas of M.
The manifold OM is called the boundary of M.

Notice that a boundary of a 0-manifold is a manifold without boundary: 0OM = ().

There is an alternative description of the boundary. A point p € M belongs to OM
if and only if there is a chart (U, ) of M such that p = (q) for some ¢ € U NR"™1. (In
particular, OR™ = R"~1.)

REMARK. The equivalence of these two descriptions may seem obvious, but it requires
a lemma that an open neighborhood in R™ of a ¢ € R™ ! is not homeomorphic to an open
subset of R™. This follows from a more general fact that a subset of R™ homeomorphic
to an open subset of R™ is open itself. The last proposition, however obvious it may
seem, requires a bit of algebraic topology for a proof. If we replace homeomorphisms by
diffeomorphisms, then the last will follow from standard theorems of calculus (what we
need, is that diffeomorphisms are open maps). We leave details to the reader.

4.2.2. Orientations.

LEMMA. Let n > 1, and let (U, ), (V,¢) be two charts of a 0-manifold M covering
a point q € OM. The charts (U, ), (V,1) of M are orientably compatible at q if and only
if the charts (UNR™ L olyara-1), (VAR L by qrn-1) of OM are orientably compatible
at q.

Proof. Tt is convenient here to use the language of local coordinates. Let (x1,...,z,),
(z},...,2]) be local coordinates corresponding to the charts (U, ¢), (V,%) of M. Then
(r1,. .., Tn_1), (zh,..., 2" ) are local coordinates corresponding to the charts (U NR™~ 1,
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Oluarn-1), (VAR 1 ah|yyqrn-1) of 9M. We have the following: at ¢, x,, = z/, = 0; within
o(U), x, < 0; within ¢(V), a, < 0; within o(U) N(V), if z, = 0, then 2/, = 0 (and

vice versa). Let J be the Jacobian matrix of transition from (z1,...,z,) to (z},...,2),) at

q, and Jy be the Jacobian matrix of transition from (z1,...,2,-1) to (z,..., 2, _) at q.
Jg 0 . ox! . ox!

Then J = | 77 ,a > 0 (meaning that —= =0 for i < n and —=* > 0). Hence det Jy
* a ox; o0z,

and det J = a - det Jy have the same sign.

This lemma shows that if M is orientable, then OM is also orientable, and every
orientation of M gives rise to an orientation if M. Also, M and Int M are orientable
simultaneously, and there is a natural 1 — 1 correspondence between their orientations.

The case dim M = 1 requires a separate consideration. If one applies the definition
given in 1.1.6 to 1-dimensional d-manifold, the results may be disastrous. For example,
any (connected) charts of M = [0, 1] covering the points 0,1 induce opposite orientations
on Int M = (0,1); so we have to admit that the manifold [0, 1] is not orientable at all!
To avoid this nonsense, we have to modify the definition of orientation of 1-dimensional
O-manifolds. We say that an orientation of a 1-dimensional d-manifold M is by definition
an orientation of Int M. Furthermore, in the case dim M = 1, we cannot even speak of
relations between orientations of M and OM since we never defined orientations for O-
dimensional manifolds. But we will need them, so let us introduce the following, maybe,
unexpected, definition. An orientation of a 0-dimensional manifold N is, by definition, a
function N — {+, —}. (Thus, all 0-dimensional manifolds are orientable, and a manifold
consisting of r points has 2" orientations.) If M is an oriented 1-dimensional d-manifold
then we define an orientation of M as taking the value “+” on g € OM, if a (connected)
chart of M covering q is orientably compatible with the orientation of Int M, and the value
“—" otherwise.

4.3. Overview of previous results from the point of view of manifolds with
boundary.

The most part of the theory developed above can be directly extended to the bound-
ary case. We will provide a brief overview below and will point out the most essential
differences.

4.3.1. Examples.

Let us begin with D" = {(z1,...,2,) € R" | 22 + ...+ 22 = 1}. Obviously, 9D™ =
S"=1. There are many examples of geometric nature; for instance, there is the closed
Mébius band; its boundary is diffeomorphic to the circle S*. If a codimension 1 submanifold
N of M is given by the equation F' = 0 where F: M — R is a function such that no point
of N is critical, that My = {p € M | F(p) > 0} is a manifold with boundary N. For
example, there is a “drilling a hole” construction: take an n-dimensional manifold (without
a boundary) M, a chart (U, ) of M, and a small open ball d C U; then M — p(d) is a
O-manifold with the boundary diffeomorphic to S®~!. Remark that if the manifold M is
connected, then the result of the drilling a hole construction does not depend on the choice
of d.

4.3.2. Products.
If M, N be manifolds one of which, say, M, has empty boundary, then M x N has
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an obvious structure of a d-manifold with 9(M x N) = MON. Similarly, if 9N = (), then
O(M x N) = (0M) x N. The case when both M and N have non-empty boundaries is less
automatic, since there is no diffeomorphism 7: R™ x R® — R™%". Since R = R™~ ! x RL
and R® = R*"! x R! | it is sufficient to fix an identification between R! x R! and R2.
We do this by means of the map (x,y) — (2? — y?, —22y) (originated from squaring of
complex numbers), see the picture on the next page. For charts (U, ), (V,¢) of M, N,
we construct a chart (7(U x V), (¢ x ¥) o771) of M x N, and these charts form an atlas
which makes M x N a 0-manifold. Furthermore, 0(M x N) is the union of (OM) x N
and M x ON with the intersection of these two 0-manifold being their common boundary,
OM x ON.
Rl x RL R2

4.3.3. Submanifolds.

The notion of a submanifold in the boundary case is not well established. It is clear
how to define an m-dimensional 0-submanifold N of a manifold M without boundary:
for every point of p € N there must be a chart (U, ) of M such that p € p(U) and
@ 1(N) = UNR™. Similarly, N is a submanifold without boundary of a d-manifold M,
if it is a submanifold of Int M in the sense of the definition in 1.2.6.3.1. If both M and N
are J-manifolds, then we can either request that NV is a submanifold of Int M, or request
that ON C OM with appropriate conditions on charts of M coverings points in ON; we
will skip a more detailed discussion.

4.3.4. Smooth maps.

All said in Section 1.3 can be repeated in the boundary case without serious modifica-
tions. For d-manifolds, there are notions of smooth maps, diffeomorphisms, embeddings,
and immersions. Diffeomorphism must take boundaries into boundaries, while smooth
maps do not have to do this (although one can make such an assumption). The property
of paracompactness, as well as related properties, hold for 0-manifolds.

4.3.5. Tangent vectors and vector fields.

The theory of Section 2 is also extended to the case of d-manifolds. One should notice
that, for an n-dimensional manifold M with boundary, and the point p € OM, the space
T,M is n-dimensional and contains T,0M as an (n — 1)-dimensional subspace. Every
non-zero vector from 7, M either is tangent to OM, or is directed inside M, or is directed
outside M. TM is a manifold with boundary, and (T M) = U,cqp, TpM. Vector fields
are defined as before, but trajectories and flows are defined only for vector fields X such
that for every p € OM, the vector X, is either tangent to OM, or is directed inside M.
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4.3.6. Embeddings into Euclidean spaces.

PROPOSITION. Let M be a compact manifold with boundary. Then, for some N, there
exists an embedding F: M — RY such that F(OM) is contained in RN~! and for every
q € OM, d,(T,M) is transverse to RN =1, Moreover, we can make d,F(T,M) perpendicular
to RN—1,

Proof. First, let us construct a smooth function h: M — R! without critical points
on OM, such that hlsy; = 0 and Al ar < 0. For this purpose, we consider a finite atlas
{(Ui, i)} of M, and fix a partition of unity {f;: M — R} subordinated to the covering
©i(U;). Then the function h =}, fi(xy 0 gpi_l) (where x,, is regarded as a function on U;)
satisfies our conditions.

Next, we consider an embedding of M into a Euclidean space as constructed in the
first part of the proof in 3.4 and add h as an additional (last) coordinate function. we get
an embedding of M into some RY as required. To achieve perpendicularity of doF (T, M)
to RN~1, it is sufficient to replace the function x,, in the previous construction by —v/—x,,.

REMARK. It is possible to make this theorem a full replica of Theorem in 3.4 (regarding
the dimensions and approximation); we will not need this, and will not do this.

4.4. Collars and attaching 0-manifolds along boundaries.
Now we turn to properties and constructions which exist only in the boundary case.
4.4.1. Definition of a collar.

Let M be a 0-manifold. A collar of M is a (smooth) embedding c:OM x [0,e) —
M (e > 0) such that ¢(p,0) = p Vp € OM. It is always possible to narrow a collar by
restricting to OM x [0,&'), 0 <&’ <e.
4.4.2. Existence.

PROPOSITION. If OM 1is compact, M possesses a collar.

Proof. Fix a locally finite atlas {(U;, ¢;)} of M, and in every ¢;(U;) take the vector
0

field X; = pEya Then put X =), f;X; where {f;} is a partition of unity subordinated
x

n
to {¢;(U;)}. This is a vector field directed inside M at every point of M. It generates
a flow ay : M — M since OM is compact, there exists an € such that in a neighborhood
of oy is defined on OM for 0 < t < e. Put ¢(p,t) = ax(p). This is a collar, at least on
OM x [0,¢’), possibly with &’ < e.
REMARK. Collars exist without the assumption of compactness of OM.
4.4.3. Uniqueness.

PROPOSITION. If OM is compact, then for every two collars c1,co:OM X [0,e) — M,
there exist a diffeomorphism f: M — M which is the identity on OM and outside any given
neighborhood of OM and such that for some &' < e, f(ci(p,t)) = ca(p,t) Vp € OM, t < €’.

Proof. We may assume that M is compact (if it is not, we can replace M by ¢1(OM X
[0, 8]) for some positive § < €). Choose an embedding F: M — RY as stated in Theorem
of 4.3.6 (including the perpendicularity condition). Then (N — n)-dimensional planes
perpendicular to tangent planes to F'(M) are disjoint in some neighborhood of F(M) in RY
and cover this neighborhood; hence they determine a projection 7 of this neighborhood onto
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F(M). Take small €1,¢e5 such that 0 < &1 < €3 < ¢ and put 7(t) = 7., ., (¢) (see 1.3.3.2.1).
Then put fo F(ci(p,t)) = n(7(t)F(ca(p,t)) + (1 —7(¢t))F(c1(p,t)). This is diffeomorphism
defined in some neighborhood of F(OM), it is the identity outside a smaller neighborhood
of F(OM) (that is, where t > e5) and takes F'(c1(p,t)) into F'(ca(p,t)) within a still smaller
neighborhood of OM (where t < 7). (Certainly, €1 and e2 should be sufficiently small for
that.) Then we extend f to the whole F(M), and the diffeomorphism f: F(M) — F(M)
regarded as a diffeomorphism f: M — M fits into Proposition.

4.4.4. Attachments.
4.4.4.1. Attachment along the boundary.

Let M’ and M"” be n-dimensional 9-manifolds with diffeomorphic boundaries, and
let h: OM' — OM" be a diffeomorphism. In the disjoint union M’ LI M"”, merge for all
p € OM’ points p and h(p). We want to equip the resulting set M with a structure of an n-
dimensional manifold without boundary. To do this, we will need collars ¢’ : 9M' x[0,¢) —
M’ and ¢ : OM" x [0,e) — M".

Let {(Ug, va)ts {(Ug, ¢33)}, and {(V,9)} be atlases of M', M"”, and 9M’. We denote
as L1,z the canonical inclusions M’ — M, M"” — M and compose an atlas of M of the
following charts: (Uy,t1 0 ¢y,), (Uj,t2 0 ¢), and (V' x (—¢,€),1) where (for ¢ € V, t €
= (G()t), 120

— t10c((q), 1), itt >0,
Vi) = { a0 (hotp(q),—t), ift<0

(obviously, the two formulas give the same for ¢t = 0).

This manifold structure on M surely depends on the collars, but Proposition of 4.4.3
implies that up to a diffeomorphism it depends only on M’, M, and h. By this reason, we
may use for the manifold M the notation M’U; M”. Notice that M’U, M can be described
axiomatically, as an n-dimensional manifold with an (n — 1)-dimensional submanifold N
diffeomorphic to OM’ such that M — N is the union of two open and closed subsets, P’
and P”, such that P’ U N is diffeomorphic to M’ and P"” U N is diffeomorphic to M".

The attaching construction has obvious generalizations to the case when h connects
subsets of OM’ and OM" composed of whole components, or even disjoint subsets of the
boundary of the same manifold, again composed of the whole components.

EXAMPLES. If M/ = M"” = D™ and h = id, then M’ U, M" is (diffeomorphic to) S™.
If M’ is the closed Mobius band, M” = D?, and h is an arbitrary diffeomorphism between
their boundaries (both are diffeomorphic to S'), then M’ Uy, M" is RP?. If M’ = M" is
a Moebius band, and h = id, then M’ U, M" is a Klein bottle. If M’ = M" = S' x D,
then M’ U, M"”, dependingly on h, is either a torus, or a Klein bottle.

4.4.4.2. Attachment along a piece of the boundary.

We will need the attachment operation in a more general setting. Let M’ M"”
be two manifolds (of the same dimension) with boundaries. Suppose that the both
boundaries, OM’ and OM", are obtained by the previous attachment operation: OM' =
N'UN", dM" = P'UP",N' N N" = ON' = dN",P' 0 P" = P = dP". Suppose
also that there fixed a diffeomorphism h: N — P”. The result of our construction is a
manifold M with boundary N’ Ugy, P’ (where 0h: ON" — OP" is the restriction of h). The
construction is schematically shown on the picture below (next page).
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P’ P’ P’

The smooth d-manifold structure on M is defined everywhere except ON"” = 9P” C
OM in the obvious way (we need collars for both M’ and M"). To define a chart in a
neighborhood of a point of ON” = 0P”, we need to fix an identification of the union of
two copies of R” glued along R”™! onto R™. This shown schematically on the picture
below. The formula from the map from the right to the left is (z,y) — (22 — 3?2, 2zy) (the
squaring of complex numbers).

5. Morse theory.
5.1. Morse lemma.
Let f(z1,...,2,) be a smooth function defined in a neighborhood of a point p € R™.
of of (p) = 0
...—(p)=0.

We assume that p is a critical point of f, that is,ﬁ—xl(p) =5
n
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5.1.1. Non-degenerate critical points. Indices.

82
We say that the critical point p is non-degenerate or Morse, if det ‘8 3f (p )H £ 0.
T;
The symmetric matri i (p)|| is a matrix of a quadratic form E f (p)uiu
X X AT
Y 0x;0x; b q O0x;0x; b I

and it is known from linear algebra, that after an appropriate linear coordmate change
(u) — (v), this form becomes +v? £ ... £ v2 where the numbers of pluses and minuses
do not depend on the choice of the coordinate change. Moreover, since the matrix of
the quadratic form is non-singular, m = n. The number of the minus signs in the last
expression is called the index of the quadratic form, and we call it also the index of the
critical point p. It is known from calculus, that a critical point of index 0 is a point of
a local minimum, a critical point of index n is a point of a local maximum, and critical
points of other indices are (different kinds of) saddlepoints.

It is obvious (well known) that neither the non-degeneracy of a critical point, nor the
index, depend on the coordinate choice.

5.1.2. The statement.

THEOREM (Morse Lemma). Let p be a non-degenerate critical point of index k of
a smooth function f. There exists a diffeomorphism ¢ of a neighborhood of 0 onto a
neighborhood of p such that

foolr,....oun) =FfO)+yi+. . Yo — Yo 1 — - — Yo

Comments. In other words, after a (possibly, non-linear) coordinate change, the func-
tion f becomes a quadratic form plus a constant. If one adds to the left hand side of the
last formula “plus higher order terms”, then the statement becomes a conjunction of two
standard theorems: the Taylor theorem and the theorem of the canonical form of quadratic
forms (mentioned above). It is important, that after an appropriate coordinate change,
the function f becomes quadratic not up to higher order terms, but precisely. Certainly,
this would not be true without a non-degeneracy condition. For the simplest example, let
n =1 and f(z) = x3. For this function, 0 is a degenerate critical point. Its quadratic
approximation at 0 is just 0. But no coordinate change can make this function equal to 0.

5.1.3. Proof.

Our proof mimics the proof of the theorem of the canonical form of quadratic forms
from old textbooks of Linear algebra. More modern textbooks, however, usually contain
a different proof of the quadratic form theorem, so it is unlikely that the reader would
readily recognize it.

We will assume (without any loss of generality) that p = 0 and f(p) = 0. All the
formulas below valid in some neighborhood of 0, we never mention it, but always mean it.
According to lemma of 2.1.2, f(x) = ). x; fi(x) where f;’s are smooth functions de-

fined in a neighborhood of 0. Obviously, g—f(()) = fi(0), hence f1(0) = ... = f,(0)
Z;
0. Applying the same lemma to f;, we get fi(z) = Zj xjfij(z), and hence f(z) =
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fij + fii

> Tiwifij(w); we can assume that fi;(z) = fji(z) (if necessary, we can take 5

0% f
0) =2f;;(0).
First, consider the case when f11(0) > 0. Put (for (z1,...,2,) in a neighborhood of
the origin)

for the new f;;). Notice that

n
fij
=iVt ) Ti—E=,Y2=22,...,Yn = Tn.
V2 e n=n

Jy; . :
The Jacobian det' a—y(()) is equal to 1/ f11(0) # 0. Hence, we can consider z1,..., 2,
x .
(in a neighborhood of the origin) as functions of y1, ..., y,. Also,

n
F@i - yn) =97 + 91, - yn) where g(yr, - yn) = D Yiigii (Y1, - Un)-
1,j=2

The function f(y) still has a non-degenerate singularity at 0. Moreover, for every fixed y1,

the function g(y1,...,yn) (as a function of yo, ..., y,) has a non-degenerate singularity at
0
(Y2, -+ yn) = (0,...,0). Indeed, a—g(yl,O, ...,0) =0 for j > 2 (obviously), and
Yj
0% f 0% f
— 0,...,0)=2, ——— 0,...,0)=0,if j > 2
ay%(yb ) ’ ) ) 6y16y3(y17 ) ’ ) y 1L ) =2 4,
0% f 0%g
yl,O,...,O = yl,O,...,O = (Gi4 yl,O,...,O y if ’L,j 22
H dt‘ 9 (0,0 o)H L et |24 (410 O)H7éo
ence, de Y1,Y, ..., = —de Y1,Y, ..., .
9y 0y, 2 9y;0y;

The case when f11(0) < 0 is similar: we take v/— f11 instead v/f11 and get f(y1,...,Yn)
= —y? +g(y1,...,yn) with the same g as above. The case when f11(0) = 0, but fix # 0
for some k, is reduced to the previous case by a renumbering of the coordinates. The last
case is f11(0) = ... = fnn(0) = 0. Still, in this case some fi¢(0) must be not zero (since
det || fi;(0)|| # 0; after a renumerating of coordinates, we may assume that f12(0) # 0. In
this case, we make a coordinate change x1 = ] + x5, ¥2 = 7] — x5, z; = 2/ for j > 3 and
get f(x) =), s wiwjfij(x) = >, vl fi(2'), fin = fi1 + faz + 2f12 # 0; thus, this case
is reduced to a case considered above.

Thus, in all cases, we find a coordinate change (z) — (y), after which the function
f(x1,...,2,) becomes +y?+g(y1, .. ., yn) where for every fixed y; (close to 0!), the function
9(Yy1,Y2, ..., yn) of n — 1 variables ys, . .., y, satisfies the same conditions as the fucntion
f of n variables. The same arguments as before show that there is a coordinate change
(Y2, -+, Yn) — (22,...,2,) after which g(y1,v2,...,yn) becomes £23 + h(z1,...,2,) (and
f(x1,...,2,) becomes 22 + 22 + h(z1,...,2,); we put z; = y1) and for every fixed 21, 2o
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the function h(z1, 22, 23, .. ., 2,) of n — 2 variables zs, ..., 2, satisfies the same conditions
as the fucntion f.
Proceeding this way, we arrive at the statement of Theorem.

(Notice that at every step, beginning from the second, we use a stronger form of
Lemma of 2.1.2: if f(z1,...,%n,Y1,...,Ym) is a smooth function in a neighborhood of
0 € R*™™ and f(0,...,0,y1,...,ym) = 0 (for all y), then f(z1,..., %0, Y1, Ym) =
S xifi(T1, .y Tn,y Y1, - .., Ym); the proof is the same as in 2.1.2.)

5.1.4. Simple corollaries.

PROPOSITION 1. If p is a non-degenerate critical point of a function f, then in some
neighborhood of p, f has no other critical points.

Proof. We may assume that p = 0, f(p) = 0. Then, by the Morse Lemma, in some
neighborhood of 0, f is +z1 + ... £ x,,. The latter has no critical points different from 0.

PROPOSITION 2. If all critical points of f are non-degenerate, then in any compact
subset of the domain of f, the function f has finitely many critical points.

Proof. The set of critical points is a closed (obviously) discrete (by Proposition 1) set.
Hence, its intersection with any compact set is finite.

PROPOSITION 3. Suppose that for some compact set K C R", all the critical points
of a smooth function f in K are non-degenerate. Then there exists an € > 0 such that if
a smooth function g differs in K from f less that by €, and the same is true for partial
derivatives of f an g of order < 2. Then all the critical points of g in K are also non-
degenerate.

_ Proof. The (finite) set of critical points of f in K has two neighborhoods, U and
V, U C V, with the following properties: for some 6 > 0, (1) in V, the absolute value of

82
the determinant det ‘ 5 is greater that ¢; (2) in the complement of U in K, the sum
L0
of of | . . . i
——| 4+ ...4+ |=—] is greater than §. If € is small enough, then the same inequalities,
8901 8xn

with §/2 instead of §, hold for g. This means that all the critical points of ¢ in K belong
to U, and all of them are non-degenerate.

5.2. Morse functions.
5.2.1. Definition.

A smooth function on a manifold (without boundary) is called a Morse function, if all
its critical points are non-degenerate. Notice that the property of a function on a compact
manifold to be a Morse function is “C2-open”. This means that if a sequence {f,} of
smooth function on M converges to a Morse function uniformly with partial derivatives
of order < 2 (with respect to local coordinates from some finite atlas), then the functions
fn, with finitely many exceptions, are Morse functions. This follows from Proposition 3 in
5.1.4.

The goal of the Morse theory is to derive as much information as possible about the
manifold from he behavior of critical points/values of one Morse function. Example of a
result: if a compact manifold possesses a Morse function with just two critical points (there
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should be at least two critical point: a maximum and a minimum), then the manifold is
homeomorphic to a sphere.

5.2.2. Existence.
THEOREM. FEvery compact manifold possesses a Morse function.

We give below two different proofs of this theorem. Both use the Sard theorem (for
maps between manifolds of the same dimension), and, within these notes, it is the most
important application of the Sard theorem. Both proofs can be modified to the non-
compact case.

5.2.2.1. The first proof of existence.

LEMMA. Let f: D™ — R be a smooth function. There exists a dense open set A C R™
such that if a = (ay,...,a,) € A, then the function f,: D" — R,

folz) = f(z) — (a,x) = (1,...,Zp) — Q1T1 — ... — ATy

1s a Morse function.

Proof. Take for A the set of regular values of the “gradient map” V f: D" — R" with
0
coordinate functions ——, ... —f
T1 oxy,
(obviously) and has measure zero by the Sard theorem. First, x = (z1,...,x,) is a critical
0% f
6.7726217 j
is precisely the Jacobian matrix of Vf. Hence, f, has a degenerate critical point if and
only if a is a critical value of Vf.

. It is open and dense because its complement is closed

point of f, precisely if (Vf)(z) = a. Second, the matrix of second derivatives,

Proof of Theorem. We denote as d, and open ball of radius r in R™ centered at 0.
Let {(R™, ;) i = 1,...,N} be a sequence of charts of M such that U; = ¢;(d;) cover
M. We will construct inductively functions fy, f1,..., fnv: M — R such that f; has no
degenerate critical points in Ule U;; then fyx will be a Morse function on M. We put
fo = 0. Suppose that for some k£ < n, fi has already been constructed. For a € R™, define
a smooth function h,: M — by the formula

fr(p), if p€ M — ¢py1(da),
Fr(0) = Ma2(epi 1 (0) - (0,034 (p), if p € prya (R™)

ha(p) = {

(see 1.3.3.2.2 for the definition of \). Because of the openness property of the Morse
condition (see 5.1.1), f a is sufficiently close to 0, then h, has no degenerate critical points

in Ule U;; by Lemma, for a from a dense open subset of R", h, has no degenerate critical
points in Ug41. We choose an a satisfying the both conditions, and put fry1 = h,.
5.2.2.2. The second proof of existence.

In this proof, we assume that M is a submanifold of RY (which is not a restrictive
assumption, at least for compact manifolds, see Section XXX).

For a non-zero £ € RY, consider the function fe: M — R, fe(x) = (x,€) (where
(') is the standard dot-product in RY). Obviously, this is a smooth function; this is our
candidate to a Morse function on M.
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Let P ={(,,7) € RN —0)x M | ¢ L T,,M}. It is obvious that P is an N-dimensional
submanifold of (RY —0) x M (indeed, the perpendicularity condition may be expressed as
a system of n independent equation; actually, we do not need this argument, since below
we will introduce and use local coordinates on P). Let m: P — RN — 0, p: P — M be the
restrictions to P of the projections of the product (RY —0) x M onto the factors. We will
prove the following two propositions.

PROPOSITION 1: x is a critical point of the function f¢, if and only if § L T, M, that
is, if (§,z) € P

PROPOSITION 2. A critical point x of the function fe is degenerate if and only if (€, x)
is a critical point of the map m: P — RN — 0.

(Proposition 1 may be regarded as obvious; still, its proof is contained in our compu-
tations below.)

The two propositions show that the function f¢ has degenerate critical points if and
only if £ is a critical value of 7; that is, f¢ is a Morse function if and only if £ is a regular
value of 7. Thus, the Sard theorem shows that there are (many) Morse functions on M.

PRrOOF OF PROPOSITIONS. Let 2° € M. In some neighborhood U of 2°, M can be

presented by a system of equations, F;(x1,...,zy) =0, 1 <i < N—n with rank

83:
N —n. We can assume, without loss of generality, that the leftmost (N —n) x (N J— n)
OF;
6.(17]'
neighborhood of z° (which may be smaller than U, but which will be still denoted as U),
the system {F;(z1,...,2x) = 0} can be solved in x1,...,eN—n: T; = fi(TN—nt1,---, TN)-
In other words, the system {F;(z1,...,zn) = 0} is equivalent (locally, in a neighborhood
U of 2°) to the system fi(zn_ni1,-..,2n) —2; = 0,1 <i < N —n, and we can redefine
the functions F; as Fy(z1,...,2n) = fi(®N—n+t1,-. -, TN) — T;.

Obviously, x_pn41,...,2x is a local coordinate system in the neighborhood U of z°
in M. It is also clear that (£,z) € p~}(U) C P if and only if £ is a (non-zero) linear
combination of the gradients VF;, & = &§VEF| + ... + En-nVEN_n, (&1,...,&N_n) #
(0,...,0). We see that (&1,...,éN—n,TN—_n+1,---,2ZN) is a local coordinate system in
p Y (U) C P (confirming the fact that P is an N-dimensional manifold).

Now, let us find the critical points of the map m. We have:

minor, det is not zero. Then, by the implicit function theorem, in some

1<j<N-—-n

N—-n
T N EN 15 aN) = Y GVE
=1

N—n .
() Ofi Ofi
= E &10,...,—1,...,0, f e f
' N -~ S OTN —nt1 or N
=1 N—n

8LZ:N n+1

= (& Zs e
1y N—n> % Yt — Za.’L‘N
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. . . . —IN—n D afi
The Jacobian matrix of this map is where D = and H; =
0% f; : .
. Thus we see that (£, z) = (£&1,-- -, EN—ny TN—n+1,---,ZN) € P is a critical
Ox;0xy,
point of the map = if and only if det(}_, & H. (xN ntls--TN)) = 0.
Next, we consider the function fe. Let x = (z1,. ..,:IJN) € U C M which means

that z; = fi(tn—nt1,..-,2n), 1 <i < N —n, and let £ = (y1,...,yn). Then fe(z) =
N—n N

Z Yifi(TN-—nt1,-- -, TN) + Z yjxj and for N —n+1<j <N,
i=1 j=N-n+1

N—n

~

ofe N, 0n of  Ofyon G
a.fljj_ 6 +y or (ylu"'ayN) axj""’ 8xj ’9"“’

=1

,...,0
>

1
n

Thus, x is a critical point of f¢, if and only if £ is orthogonal to all the vectors n; =

0 Ofn— (7)
fl,..., I 20,...,1,...,0],N—n+1<j < N. But the vectors n; are linearly
6.(17]' 8a:j ~ ~ -
n
independent, thus vectors orthogonal to all of them form a (N — n)-dimensional space.
(4) Ofi afi
On the other side, the vectors VF; = [ 0,...,—1,...,0, #,..., Ji are also
N -~ S OTN_—nt1 oxr N
N—n

linearly independent and obviously are all orthogonal to n;. Thus, x is a critical point of
fe if and only if £ is a linear combination of gradients of Fj, that is, if & L T, M, that is,
if (£, x) € P. This settles Proposition 1.

(4)

Now, let, for some 2° € U Cc M, & = ZszF Zfl 0,...,—1,...,0,
Ntn
afi 0 afi 0 =
— . Th Al e = — i i ST [P
iy ) g (=) en fe(TN—nt1 TN)) ; §i | filxn—nt1
N
TN)+ Z T 8—(36 ) |- The second summand is linear in z; and does not contribute
J=N—n+1 Ly
82 N—n 62 ;
to the matrix of second derivatives. Thus, ijgfl;k ; & Iz, éka Comparing this

result with the previous result concerning the critical points of m, we observe that x is a
degenerate critical point of fg precisely if (£, ) is a degenerate critical point of fe. This
proves Proposition 2.

5.2.3. Generalizations.
5.2.3.1. Density.

Our proof of the existence theorem in 5.2.2 actually gives a stronger result: the set of
Morse function (on a compact manifold) is dense in the space of all smooth functions with
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respect to the C* topology. In other words, for every smooth function h: M — R, there
exists a sequence {h,,} of Morse functions which converges to h uniformly with all partial
derivatives of all orders with respect to all charts (U, ) with compact U. To obtain this
result, we modify the proof of Theorem 5.2.2 in two ways. First, for fy we take not 0, but
h. Second every a used in construction of a Morse function h,, we take at the distance less

1
than — from the origin. Then the sequence {h, } will converge to h as stated.
n

5.2.3.2. Different critical values.

We can enhance the existence theorem with an additional property: every (compact)
manifold M posesses a Morse function with all critical values different. To achieve that,
we first consider some Morse function f on M. Then we take a critical point p and include
it into two neighborhoods, U and V such that V' C U and that f has no critical points
in U different from p. In is convenient to assume that U is covered with some chart. For
some positive §, the gradient of the function f has length > § at every point of U — V' (all
this with respect to a chosen system of local coordinates in U). Take a smooth function
h: M — R which is equal to 1 within V and to 0 within M —U. Let C be the upper bound
for the length of the gradient of h within U (with respect to the same local coordinate

)
system). Then the function g = f 4+ ch where 0 < £ < — has the same critical points as f

and the same critical values with one exception: ¢g(p) = f(p) + €. In this way, we can vary
critical values of a Morse function, and, in particular, can make them all different.

5.2.3.3. The boundary case.

A smooth function f: M — R is called a Morse function, if (1) f |gas is constant; (2)
forap e Int M, f(p) # f(OM) (if M is connected, then f |1t as has to be either > f(OM),
or < f(OM); (3) f has no critical points on OM; (4) f has no degenerate critical points
on M. Notice that condition (2) means that if p € OM and § € T,M —T,(0M) is directed
inside the manifold (see 4.3.5), then &(f) # 0. Notice also that this is not the only possible
definition of a Morse function on a manifold with boundary: for example, sometimes it
is convenient to replace the condition (1) by the “opposite” condition that the restriction
f loar is a Morse function on 0M (in which case we need to remove condition (2). We
accept the definition of a Morse function on a manifold with boundary which better serves
our purposes.

THEOREM. FEwvery compact 0-manifold has a Morse function.
REMARK. As in 5.2.2, compactness assumption is not necessary.

Proof of Theorem follows the lines of Proof in 5.2.2. First, using a collar ¢: M x
[0,e) — M we define a function fy: M — R by the formula

Folp) = wu(t), if p=c(q,t) for some ¢ € OM, 0 <t < ¢,
0PI =31, ifpeM—c(OM x [0,¢)).
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where p is the function whose graph is shown on the

1 right (the reader can write a formula for this function
a using the functions from 1.3.3.2.1).

The remaining construction is similar to that in

5.2.2. We fix charts (R",p;), i = 1,..., N of Int M

such that ¢;(D™) cover M — ¢ <3M - %) and then

¢ define a sequence of functions f1,..., fy precisely as
e 2 ¢ it was done in 5.2.2 (with sufficiently small a). The
33 function fx is a Morse function on M.

Precisely as above, we can prove that any smooth function on M satisfying the con-
ditions (1)—(3) of the definition of a Morse function on M can be C* approximated by
Morse functions and that a Morse function can be assumed having no equal critical values.

5.2.3.4. Further generalizations.

In conclusion, we will discuss some possibilities to request further properties from
Morse functions; but we will not prove them, at least now (some indication how it can be
done will be given later). For simplicity, we will restrict ourselves to manifolds without
boundary (although everything can be extended to the boundary case).

First, it is well known that every smooth function on a compact manifold has at least
one local maximum and at least one local minimum (one can take a global maximum and
a global minimum). One can say more:

PROPOSITION 1. A connected manifold possesses a Morse function with precisely one
local minimum and precisely one local maximum.

Second, it is certainly true that the critical point of a Morse function with the smallest
value is a local (global) minimum. and the critical point with the greatest value is a local
(global) maximum. Again, one can say more:

PROPOSITION 2. An arbitrary manifold possesses a Morse function f with all critical
values different, and such that if p, q are critical points and indp < ind q, then f(p) < f(q).

Say, in dimension 2, we can request that all local minimum values are less than the
values at saddle points and those are less than all values at local maxima.

5.3. A gradient-like vector field.
This is the last technical device we need to construct the Morse theory.
5.3.1. Definition.

Let M be a smooth manifold and let f: M — R be a Morse function. A vector field
X on M is called a gradient-like vector field (of f) if the function X f is negative at all
points of M not critical for f. (It is obvious that if p € M is a critical point of f, then
X f(p) = 0 for any vector field X.) So, in particular, if p is not a critical point of f, then
Xp # 0. In the complement of the set of critical points, we can divide X by —X f; then
we get a vector field X (in this complement) such that X f = —1.

From now on, we will assume the manifold M compact.

5.3.2. Existence.
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THEOREM. For a Morse function f on a compact manifold M, there is a gradient-like
vector field.

Proof. Choose a finite set of charts (U;, ¢;) of M such that M = |, p;(V;) where V,C
U;. Let hj: M — [0, 1] be a smooth function such that h;(¢;(V;)) = 1, h;(M —¢;(U;)) = 0.
Let then X; be the image in ¢;(U;) the "minus gradient” vector field —V f o ¢; of the
function f o p;:U; — R. Then X = ). h;x; is a gradient-like vector field for f.

We can assume that in this construction, for every critical point of f, there is only
one chart covering this point, and this is the chart from the Morse lemma.

5.4. Main results.
5.4.1. Manifolds of smaller values.

Let f: M — R be a Morse function on a compact manifold with all critical values
different. Let ¢; < ca < ... < ¢y be all critical values of f. For a ¢ € R, we consider the
sets M. ={pe M| f(p) =c} and M<. ={p € M | f(p) < c}. If ¢ is not a critical value
of f, then M. is a manifold with the boundary M.. Obviously, M. = M<. =0, if ¢ < ¢4,
and M. =0, M<. = M, if ¢ > cy. Our goal is to study the dependence of M.and M<. on
c and to apply the results to describing the structure of M.

5.4.2. M. and M<. are stable between critical value.

THEOREM. If, for some i, ¢; <b < a < ¢i11, then M<, is diffeomorphic to M<y, (and
M, = OM<, is diffeomorphic to My, = OM<y.

Proof. Fix an € > 0 such that ¢; < b — ¢ <

a+e < c¢;4+1 and fix a gradient-like vector field X; we
may assume that within {p € M | b—¢e < f(p) < a+
e}, Xf = —1. Let o be the flow generated by the
vector field X. Then, obviously, within the interval
above there arise diffeomorphisms ¢;: My — My,
in particular, M, — M,.
b Moreover, if p:R — R is a function with the
graph shown on the left, that is such that u(t) =t
fort >a+ceand fort <b—e, pla)="0, put) <t
b—e and p'(t) > 0 for all ¢, then the maps @;_,,4y: My —
M, 1), together with the identity M<, . — M<p_,
compose a diffeomorphism M<, — M<,.

Y

a—+¢€

b—e¢ l') a a+te

Notice also that the formula p +— @¢)—y(p) defines a diffeomorphism M, — M, —
My, x [b, a] which takes the function f into the projection M, x [b,a] — [b, a].

The theorem above shows that among the manifolds M<. (as well as among M, =
OM<.) there are finitely many different. To complete the description of these manifolds
(among them, M) we need to understand what happens to these manifold when ¢ passes
through a critical value.

5.4.3. Key operations: attaching handles and Morse surgery.
5.4.3.1. Attaching handles.

Let P be an n-dimensional manifold with boundary, and let n: S*~! x D"~% — 9P
where 0 < ¢ < n be an embedding. (Notice that if i = 0, then Si=lx D"~ =), so 7 means
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nothing; if i = n, then S*~! x D"~% = §"~! 50 1 has to be a diffeomorphism of S"~! onto
a component of dP.) On the other hand, S~! x D"~% is a part of the boundary of the
product D x D"~1 which is diffeomorphic to D™ (see 4.3.2 for a discussion of a product
of two manifolds with boundaries). Now we use a construction of 4.4.4.2 to attach the
product D? x D" ! to P. Denote the resulting manifold as P. The transition from P to
P is called attaching a handle of index ¢ by means of the embedding n.

For a better understanding of this important operation, let us consider several exam-
ples.

Index 0. Since in this case 7 is an embedding of the empty set, the attaching a handle
of index 0 means simply adding a new component: P = P| | D".

Index n. Since in this case 1 is a diffeomorphism of S™~! onto a component of the
boundary, attaching a handle of index n may be visualized as capping a hole.

Index 1. Since S° consists of two points, in this case 7 is an embedding of the union
of two (disjoint) (n — 1)-dimensional discs into 0P, and attaching a handle of index 1 is
attaching a cylinder D"~ x [—1, 1] by the two bases. This cylinder may join two different
components of P or to be attached to the same component. In the last case, attaching
a handle may destroy the orientability of P. Several pictures (for dim P = 2) are given
below.
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This geometric description of attaching handles on index 1 is the origin of the name
of the operation.

Attaching handles of other indices also has a transparent geometric sense. For exam-
ple, attaching a handle of index 2 means attaching a low cylinder along its side surface.
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5.4.3.2. Morse surgery.

This is an operation which is applied to 9P when P undergoes attaching a handle.
We will not use it any seriously, but it is very important in differential topology, and by
this reason it deserves a brief independent consideration.

Let Q be a manifold of dimension m, and let (: S*~tx D™=+ — Int Q (0 <i < m) be
an embedding. Let us cut ¢(Int(S*~! x D™~*1)) from Q. We get a manifold Q' with the
boundary 0Q’ = 9Q| |(S*~! x S™~%). Attach D' x S™~* to ' along the diffeomorphism
O(D? x S~ = S+l x §m=1 C Q' of (D? x S™*) onto a component of Q’. We say
that the resulting manifold @ is obtained from () by a Morse surgery along the embedding
¢. For example, if P is obtaoned from P by an attaching a handle along an embedding
n: 81 x D"~ — OQP, then OP is obtained from AP by a Morse surgery along the same
embedding 7.

5.4.4. Passing a critical value.

THEOREM. Let ¢ be a critical value of index i of the Morse function M, and let [¢/, c"]
be an interval such that ¢ < ¢ < " and [¢, ] contains no other critical values of f. Then
M. is obtained from M. by attaching a handle of index 1.

Proof. 1t is all shown (at least when 0 < i < n) in the pictures below.

Mc” .CB.l, e ,.fI?n_?; Mc//
dim=n—1

Tn—itly---yTn

dim =1

Mc// MC’
M.

fl@)=c+ai+.. . +a2_,—al ., —...—a2

The first picture shows the structure of the sets M<./, M<., M<.» in a neighborhood
of the critical point with the critical value ¢. The three set closely follow each other
everywhere outside this neighborhood. M<. consists of a part diffeomorphic to M<.
(the diffeomorphism is shown by short arrows) and a handle D* x D™~% which is seen as a
curvilinear rectangle in the middle of the picture. Further details are shown in the picture
next page.
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The cases ¢ = 0 and ¢ = n are simple and do not deserve any drawing. When ¢ passes
through a critical value of index 0, that is, through a value at a local minimum, there
arises first a point, and then a small disc centered at this point. This is attaching a handle
of index 0. When c¢ passes through a critical value of index n, that is through a value at a
local maximum, a component of the boundary which is a small sphere collapses to a point.
This is attaching a handle of index n.

5.4.5. The final statement.
The results of previous sections together give the following structure result.

THEOREM. Any smooth manifold M can be obtained from the empty set by successive
attaching of finitely many handles. For a Morse function f on M, the number of handles
of index i can be made equal to the number of critical points of f having index 7.

COROLLARY. Let a compact manifold M (without boundary) possess a Morse function
with precisely two critical points. Then M is homeomorphic to a sphere.

Proof. Our manifold M is obtained from () by attaching handles of indices 0 and
n = dim M. The first makes it D", the second consists in attaching D™ to D™ by some
diffeomorphism ¢: S"~! — S”~!. The standard S™ is also made of two copies of D™, but
they attached to each other by id: S"~! — S"~!. We compose a homeomorphism M — S™
from two homeomorphisms D™ — D™: the first is id, the second is defined by the formula
tr — to(x) forz € S*7H 0<t < 1.

REMARKS. (1) Homeomorphic in the last statement does not necessarily means dif-
feomorphic (J. Milnor, 1956.) (2) It is true, actually that if M posseses a smooth function
with precisely two critical points which are not assumed non-degenerate then it also home-
omorphic to a sphere (G. Reeb, 1949).

5.4.6. The boundary case.

This case is not different from the boundary free case. It was remarked in 5.2.3.3 that
a 0-manifold possesses a Morse function which is 0 on the boundary and positive inside.
For our current purposes we prefer to attach a minus to this function. Then again we
consider M<. with ¢ growing and observe the same process of attaching handles which
stops when we reach M<o = M.

5.4.7. Homotopy type.

Up to a homotopy equivalence, attaching a handle of index i to a d-manifold P is
the same as attaching a disc D® by means of some continuous map 7: S*~! — 9P C P.
Moreover, up to a homotopy equivalence the result of attaching depends only of homotopy
types of P and 7. If we apply this observation to the whole process of building a manifold
M (with or without boundary) with a Morse function f from the empty set by successive
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attaching handles, we will get a CW complex homotopy equivalent to M with the number
of +-dimensional cells equal to the number of critical points of index ¢ of the function f.

REMARK. It is known (S. Smale, 1960) that if a compact smooth manifold M of
dimension > 5 is homotopy equivalent to some CW complex X then it possesses a Morse
function with the number of critical points of index ¢ equal to the number of i-dimensional
cells in X. With Corollary in 5.4.4.5, this implies that if a manifold (compact, without
boundary) is homotopy equivalent to a sphere, then it is homeomorphic to this sphere
(“generalized Poincaré conjecture”).

5.5. Application of the Morse theory: classification of compact manifolds of
dimension 2 (aka compact surfaces).

Terminology: a 2-dimensional compact manifold, possibly with boundary, is called a
compact surface.

5.5.1. Basic operations.
5.5.1.1. Drilling a hole.

Let S be a connected compact surface, and let n: D? — Int S be a smooth embedding
(for clarity, we can assume that 1 can be extended to an embedding of an open disc of
some radius > 1 centered at the origin. We consider the manifold S = S — n(Int D™).
(Obviously, 88" = 9S| | S'.) The transition from S to S’ is called drilling a hole.

It is important to notice that, up to a diffeomorphism, drilling a hole is a well-defined
operation, that is, if S’,S” are obtained from the same S by drilling holes by means
of embeddings n’,n"”: D™ — S, then S’ and S” are diffeomorphic. The proof is shown
schematically on the pictures below. First, a self-diffeomorphism of S along the n-images
of radial rays (identity on the rest of the surface and in the neighborhood of 7(0)) takes
n(D™) into a small disc centered at n(0) in a local coordinate system around 7(0) (see
the left picture); this shows that two embeddings, 7', n"”: D™ — S such that 7'(0) = n"(0)
may be related by a diffeomorphism of S. Second, we can pull 7(0) along a path using a
diffeomorphism within U, as shown in the right picture.

5.5.1.2. Attaching a handle.

To begin with, this is not the same operation which was considered above, in 5.4.3.1.
To avoid a confusion, I could rename one of these operation (for instance, the operation of
5.4.3.1 could be called “attaching a handlebody.”) But this confusion exists everywhere in
literature, and it is not for me to fight this well-established tradition.

The operation we consider now is the following. Take a connected surface S surface
and drill a hole in it. Then take a torus 7" and also drill a hole. Then attach T to S along
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the edges of the holes (see a picture next page, left). Another construction of the same
is shown on the right picture: we attach a cylinder C' to a surface S with two holes. The
resulting surface is denoted as S’.

L0
N e
L ag

Again, we need to check that this operation is well defined. Regarding the construction
on the left picture, we need only to check that if we attach the torus to S using two
different diffeomorphisms, ¢, 1: S* — S, we will get diffeomorphic surfaces S’. First we
notice that we can assume that ¢ both preserve orientations (otherwise, we can, before the
attachment, reflect the torus in any of two vertical planes of symmetry). Then we observe
that ¢ and v must be isotopic, that is, there is a smooth family of diffeomorphisms
{ipp: St — St 0 <t <1 of diffeomorphisms such that ¢ = ¢, p; = 1. To prove this, we
present ¢ and 1 as smooth functions &: [0, 2] — [0, 2o + 27, ©: [0, 27] — [z1, z1 + 27]
with positive &, ¢' and put &;(z) = (1—#)@(z) +t(x) (see the picture below on the left).
After this, we put x: = 9 o ¢y and, before attaching the cylinder pulled from the torus
to the cylinder pulled from the surface S, we apply to the upper cylinder a twisting map
defined by means the family x;, as shown on the right picture below.
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As to attaching a handle to two hole (as shown above on the right), there is a possibility
to attach the cylinder to two oppositely oriented circles. We will return to this version of
attaching a handle later in 5.5.1.4.

49



5.5.1.3 Attaching a Mdobius band.

The boundary of a Mébius band is (diffeomorphic to) a circle. Hence, we can transform
a surface by first drilling a hole and then attaching s Mobius band to the edge of this hole.
There is another description of the same operation: we attach an arc to every pair of
opposite points of the edge of the hole (again, it is not possible to do that without self-
intersections in space). The arguments above show that the operation of attaching a
Mobius band is well defined.

5.5.1.4. Attaching an inverted handle.

This is an attaching a cylinder to edges of two holes shown in a picture below. This
is also a well-defined operation.

Sphere with attached g handles, m Mobius bands, and drilled A holes is denoted as
S(g,m,h).
5.5.1.5. Examples.

Sphere with one hole, S(0,0,1), is a disk.

Sphere with one handle, S(1,0,0), is a torus. Sphere with g handles, S(g,0,0), is
called (especially in algebraic geometry) a surface of genus g.

Sphere with one hole and one Mdbius band, S(0,1,1), is a M&bius band.

Sphere with one M&bius band, S(0, 1,0), is a projective plane. The surface S(g,1,0)
is usually referred to as a projective plane with g handles.

The Klein bottle has two descriptions. First, there is a popular picturebook description
which presents the Klein bottle as a sphere with an inverted handle; second, it is obtained
by attaching two copies of a Mdbius band along their boundaries; the latter may be also
identified as S(0,2,0). The picture on the next page shows a way how to cut a Klein bottle
into two Mo6bius bands. (The Klein bottle is shown there as a circular cylinder with the
two bases attached to each other after reflection in a diameter.)

The equivalence of the two descriptions of the Klein bottle has an immediate conse-
quence of the following proposition which will be also useful later.

PROPOSITION. If m > 3, then, for any g, h, there is a diffeomorphism S(g, m,h) =~
S(g+1,m—2,h).

Proof. The surface S(g, m, h) may be regarded as a Klein bottle S(0,2,0) with addi-
tional g handles, m — 2 Mobius bands, and h holes. Because of the equivalence of the two
construction above, this is a sphere with inverted handle plus g handles, m — 2 Mo6bius
bands, and A holes. Since m — 2 > 0, there is at least one Mobius band. We pull one of
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the holes of attachment of the inverted handle to this Mobius band, then drag it around
this Mobius band, and then pull it back ti its in initial position. As a result, the inverted
handle becomes an usual handle, and the whole surface becomes a sphere with a han-
dle plus g more handles, m — 2 Mobius bands, and h holes, that is, the surface becomes
S(g+1,m —2,h) as was stated.

B
B B
Klein bottle Two Mobius bands

5.5.2. Main result.
5.5.2.1. The statement and a scheme of proof.

THEOREM. Any connected compact surfaces is diffeomorphic to precisely one from the
following surfaces:

— sphere with handles and holes;
— projective plane with handles and holes;
— Klein bottle with handles and holes.

We will call these surfaces standard.
With the exception of the clause “precisely one” this theorem is proven below.
Scheme of a proof. First we prove the following

PROPOSITION. Any connected compact surface is diffeomorphic to some surface of the
form S(g,m,h).

This is proved in 5.5.2.2; the proof is based on results of the Morse theory (5.4.4
and 5.4.5). Combined with Proposition in 5.5.1.5, this shows that any connected compact
surface is diffeomorphic to one of the surfaces listed in Theorem.

It remains to show that the surfaces of this list are not diffeomorphic to each other.
We will discuss it in 5.5.2.3, but will not give a full proof.

5.5.2.2. Proof of diffeomorphism with a standard surface.

According to results of 5.4.4 and 5.4.5, an arbitrary surface can be obtained from an
empty set (or from a disk) by a sequence of attaching handles. We assume that before an
attaching a handle, every component of our surface was of the form S(g, m, h); we want
to prove that the same will be true after attaching a handle. A handle can have indices 0,
1, or 2. Let us begin with two trivial cases.

Attaching a handle of index 0 creates a new component, which is a disk, that is
S5(0,0,1), and makes no other changes. Thus, we have no problems in this case.
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Attaching a handle of index 2 consists in capping a hole. This affects only one com-
ponent, some S(g, m,h) with h > 0, and makes it S(g,m, h—1). Again, everything is OK
in this case.

Attaching a handle of index 1 is attaching a rectangle (“a piece of skotch”) by two
opposite sides to two intervals on the boundary of our surface. Here we have to consider
5 different cases. Cases 1 and 2: we attach the rectangle to the edge of one hole in such
a way that the union of the rectangle and a thin neighborhood of the edge of the hole is
orientable (Case 1) or not (Case 2). Cases 3 and 4: we attach the rectangle to two separate
edges of two holes within one component of the surface; again, the union of a rectangle,
thin neighborhoods of the edges and a strip joining the edges within the surface may be
orientable (Case 3) or not (Case 4). (Actually, if the component to which we attach the
piece of skotch was not orientable, then this two cases are the same; we do not need to
pay any attention to this.) Case 5: we attach the rectangle to edges of holes on different
component of the surface.

These 5 cases are shown on a picture below.

H —_ ZanN
Ca@ ‘ W ‘ Case 4 mm
§ Case b =A ?

52



In Case 1 we just get an additional hole: S(g, m,h) becomes S(g, m,h+1). In Cases
2-5, we use 1 or 2 holes, but get a piece of a surface with a connected boundary. Let us fill
this appearing hole with a cap, then look what we get, and then remove the cap, that is,
drill a hole. In cases 24, this composition operation (attaching a piece of scotch and then
a cap) is equivalent to attaching a M&bius band (we attach an arc to every pair of opposite
points on the edge of the hole), attaching a handle, and attaching a perverted handle (which
is the same as attaching a Mobius band to each of the holes, see 5.5.1.5). Attaching a piece
of scotch leaves the number of holes unchanged in Case 2 and reduces it by 1 in Cases 3 and
4. Hence S(g, m, h) in Cases 2-4, becomes, respectively, S(g,m+1,h), S(g+1,m,h—1),
and S(g,m + 2,h — 1). Finally, in Case 5 we are dealing with two surfaces, S(g,m,h)
and S(g’,m’, h’), the handles and M6bius bands on these two surfaces stay intact, the two
holes participating in the operation become one.

Here is the summary of our results:
Case 1: S(g,m,h) = S(g,m,h+1).
Case 2: S(g,m,h) = S(g,m+ 1, h).
Case 3: S(g,m,h) = S(g+1,m,h—1).
Case 4: S(g,m,h) = S(g,m+2,h —1).
Case 5: S(g,m,h)US(¢g",m',h)= S(g+¢ ,m+m',h+h —1).
These results complete the proof of Proposition in 5.5.2.1.
5.5.2.3. All standard surfaces are not diffeomorphic to each other.

This result is not especially difficult, but any proof requires some material not covered
in these notes.

There are two things known to us. First, the number of holes is the number of
components of the boundary. If two surfaces are diffeomorphic, then their boundaries are
diffeomophic, hence, they have the same number of components. Thus, if two standard
surfaces are diffeomorphic, then the number of holes is the same. We can fill the holes,
and the surfaces will remain diffeomorphic. Thus, we need to prove that standard surfaces
without boundaries, that is, spheres with handles, projective planes with handles, and
Klein bottles with handles, are all different. Another observation is that some of the
standard surfaces are orientable, and some are not, and an orientable manifold cannot
be diffeomorphic to a non-orientable manifold. Thus, we need to distinguish separately
between spheres with handles, and separately between projective planes and Klein bottles
with handles.

To do this, we must use some tools from topology. For example, it is not hard to prove
that all standard surfaces without boundary have non-isomorphic fundamental groups. It
is easier to apply a simpler invariant: the Euler characteristic. The latter may be defined
by the means of the Morse theory. Namely, let f be a Morse function on a compact
manifold M, with or without boundary, and let ¢;(f) be the number of critical points of f
of index i.

PROPOSITION. The alternating sum »_.(—1)"c;(f) does not depend on f, that is, is
determined by M.

Idea of Proof. Any two Morse functions on M may be connected by a “generic
deformation” f;. In this deformation, only finitely many of functions f; are not Morse, and
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when t passes a value for which f; is not Morse, only two events may happen: two critical
points of neighboring indices may appear or disappear. (For example, in a generic family
of functions of one variable, a local maximum and a local minimum may simultaneously
appear or disappear.) Obviously, neither of these events affects the alternating sum in the
statement.

The alternating sum in Proposition is called the FEuler characteristic of the manifold.
Obviously, diffeomorphic manifolds have equal Euler characteristics.

A direct computation shows that the Euler characteristic of S(g,m,h) is equal to
2 —2g—m — h. In particular, the Euler characteristic of a sphere with g handles is 2 — 2g,
so all spheres with handles are not diffeomorphic to each other. The Euler characteristic
of a projective plane with ¢ handles is 1 — 2g, the Euler characteristic of a Klein bottle
with g handles is —2¢; thus all these non-orientable surfaces are not diffeomorphic to each
other. (But Euler characteristics do not distinguish between spheres with handles and
Klein bottles with handles!)

FinAL REMARK. Both fundamental groups and Euler characteristics are homotopy
invariants. Thus, standard surfaces without boundaries are not only not diffeomorphic,
but also not homotopy equivalent to each other. For surfaces with boundary, a similar
thing is not true.

5.6. An application to three-dimensional manifolds: Heegard splitting.

The following result is one of the most important tools of topology of three-dimensional
manifold. We will deduce it from the Morse theory using Proposition 2 of 5.2.3.4 which was
given without a proof. We use the following notations: S, = S(g,0, 0) is a two-dimensional
sphere with ¢ handles, and B, is a “handlebody, a solid bounded in R3 by S, embedded in
R3 in the standard way (a garland of solid tori connected by solid cylinders with a common
axis). Thus, 0B, = S,.

THEOREM. Let M be a connected orientable compact three-dimensional manifold with-
out boundary. There exist a g and a diffeomophism ¢: Sy, — Sy such that M is diffeomor-
phic to the manifold By U, By obtained by attaching By to By by means of ¢.

The splitting M = B, U, By is called a Heegard splitting.

Proof of Theoem. Let f be a Morse function on M satisfying the condition of Propo-
sition 2 of 5.2.3.4: if p, g are critical points of f and ind(p) < ind(g), then f(p) < f(q).
Let ¢ be a real number which is greater than any critical value of f of indices 0 and 1,
but less than any critical value of f of indices 1 and 2. Then M = M<. U M>. and
M<.NM>, = 0M<. = 0Ms>. = M,.. The manifold M, must be connected (since attaching
handles of indices > 1 would not change the number of components) and orientable (as a
codimension 0 submanifold of an orientable manifold). It is obtained by attaching solid
cylinders to balls, thus it is a handlebody B, with some g. Its boundary M, is S,. Finally,
M. is also a handlebody, since it is M<_, for the function —f. It is B, with the same g,
since its boundary is 5.

REMARK. This theorem has an appearance of a full classification of compact orientable
thee-dimensional manifold. However, it leaves unanswered two questions: a classification
of (isotopy classes of) self-diffecomorphisms of S;, and also the problem of possible dif-
feomorphisms By U, B, ~ By Uy, Bg. Luckily, the first problem has been settled by
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Max Dehn in the thirties: there exists an explicit description of the isotopy classes of
self-diffeomorphisms of S,;. The second problem, however, is algorithmically unsolvable.

6. Differential forms and the Stokes theorem.
6.1. A linear algebra introduction.
6.1.1. The space of exterior forms.

Let V be an n-dimensional (real) vector space. An exterior form « of degree ¢ on V
is defined as a real-valued function [(v1,...,v4) € V X ... x V] — «(v1,...,v,) which is

g-linear, !
a(vy,...,dvi+ad"v, .. v,) =dalvy, .. v o) Had v, ) o),
for 1 <i<gq,vi,...,0,v/,...,v, €V, d/,a” € R, and skew-symmetric,
Oé(IUT(l)v SR vT(q)) = Sgn(T)Oé(vb SRR Un)

for 7 € ;. The set AYV* of all exterior forms of degree ¢ in V' has a natural structure of

n
a vector space, and its dimension is ( ) Indeed, if {ej,...,e,} is a basis in V| then an
q

n
exterior form o € A?V* is fully determined by ) real numbers
q

Qiy..ig :a(eil,...,eiq), 1<%y <...<iq§n,

and these numbers can be chosen arbitrarily. For example,
afer + ez, ez + e3,e3 +eq) = aler, ez, e3) + aler, ez, eq) + afer, e3, e3) + aler, e3, eq)

+ 05(62, €9, 63) + 06(62, €9, 64) + 05(62, €3, 63) -+ 06(62, €3, 64)

= (123 + (124 + Q134 + Q234.
General formula:
n n , PRI
[0 E A;1€55 .- -y E Qg€ = E det | ... .. ..., . ail...iq-

Proof: exercise.

Thus, dim A°V* =1 (A°V* is just R), dim A'V* = n (ALV* is just V*), dim A"V* =
1, and AIV* =0 for g > n.
6.1.2. Reaction to linear maps.

If f:V — W is a linear map, then the formula
[f ()](v1,...,vq) = a(f(v1),..., f(vg)), where @ € ATW™, vy,...,vy €V,
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defines a linear map f*AYW* — A9V*. This operation possesses standard “functorial”
properties: id* =1id, (fog)* =g* o f*.
6.1.3. Exterior products.

Let o € A9V*, 3 € A"V*. The form a A B € AYT"V* is defined by the formula

. . a(g+1)
(A B)(v1,. .. Vggr) = Z (=)t (v, ) B0 - 0),)

1< <. <1 <q+Tr

where 1 < j; < ... < g, < qg+r, {ji,...,0r} ={1,...,qg+ 7} — {i1,...,ig}. The sign
. . 1
(—1)“*"'“‘1*(1((1; > is needed to make a A 3 skew-symmetric.

PROPOSITION 1. For all a € AIV* € A"V* ~v e ASV™,
(&) an(BAY)=(aAB)AYy.

(b) BAa=(-1)T"aAp.

Proof: exercise.

PROPOSITION 2. Let {e1,...,e,} be a basis of V* = A'V* dual to {ey,...,e,} (that
is, €i(ej) = 0i;). Then, for all o € AV,

o = E ail...iqgil /\.../\61‘{1
1< <...<ig<n

where (as before) ay,. i, = a(es,, ..., ei,).
Proof: exercise.

6.2. Differential forms on a manifold.

6.2.1. Definition.

Let M be an n-dimensional manifold, and let ¢ > 0. A differential form « of degree ¢
on M is defined as a family of exterior forms «, € AY(T,M)* (a more common notation
for (T,M)* is Ty M) which is C* with respect to p. The latter can be defined in three
equivalent ways (the equivalence will be obvious(.

(1). Coordinate description. Let (z1,...,x,) be a local coordinate system defined in
U C M. Then, for every p € U, thee arises a basis (%, . ,%) of T,M, and « is
fully determined, within U, by the functions
0 0 . :
Qiy..i, (D) = (8:{:1-1"“’87%)’ 1<ip <...<ig<n.

We require that all these functions are C*°. Certainly, one needs to check that this property
does not depend on the choice of local coordinate, but this is done by a routine application
of the transition formulas.

(2) A coordinate-free version of the same. We can require that for any vector fields
X1,..., Xy € Vect(M), the function

(X1, XM =R, (X1, X)) (D) = ap(Xip, - Xgp)
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belongs to C*°(M).
(3) Using TM. Let

(M) = LM x..xT,Mc () (T, Mx...xT,M)=TMx...xTM.
peEM ‘q, pl...quM ‘q’

Obviously, (M)} is a submanifold of TM x ... x TM. The formula a(i,...,&) =
ap(&r,...,&) for &, ...,&; € T, M defines a function on (T'M)%, and we require that this
function is C*°.

Notice that Condition (2) gives rise to a definition of a differential form, seemingly
independent of Linear algebra. A differential form of degree ¢ on M is a function

a: Vect(M) x ... x Vect(M) — C>(M)

7

q
which is skew-symmetric and multilinear over functions, that is
a(Xy,. . X+ "X X)) = fla(Xy, . XD X))+ (X, X X)),

for 1 <i<gq, Xy,..., X, X! ..., X,, € Vect(M), f', f" € C>®(M). We will use below all
three versions of definition.

The space of differential forms of degree ¢ on M is denoted as QM. It is obvious
that QOM = C>°(M).

The operation of a wedge-product exists for differential forms: if « € QIM, 5 € Q" M,
then there arises a differential form aAB € Q97" M, and Proposition 1 of 6.1.3 holds without
any changes. It is clear also that a smooth map f: M — N between two manifolds induces
linear maps f*: QIN — QIM, and id* =1id, (fog)* =g* o f*, f*(aAB) = f*a A f*[.
6.2.2. Differentials.
6.2.2.1. Differentials of functions.

Recall that we know an example of a differential form, and this is the differential of
a function. If f € C>°(M) = Q°M then any of the formulas d,f (&) = £(f), df (X) = X f
where p € M, £ € T,M, X € Vect M defines a differential form df € Q'(f). Thus, we
have a homomorphism d: Q"M — Q'M. Our goal is to generalize it to a homomorphism
d: QIM — QItipg,

First let us notice that if (z1,...,z,) is a local coordinate system in a U C M, then
0
dx; (8—903) = 0;j; in particular, {d,z1,...,d,x,} is a basis of T,y M dual to the standard
0 0
basis {a—, e 6—} of T, M. Applying Proposition 2 of 6.1.3 to every T),M, p € U, we
T Tn

get the following result.
PROPOSITION. In U, an arbitrary differential form o € Q9M has the form

o= g iy i (1, ) dgy Ao Adag,
1§11,<<zq§n
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) )
dz;, " Oy

1q

where o, .., (T1,. .., Tn) is the function a;, . i, (p) = ayp ( ) expressed in the

local coordinates (x1,...,Ty).
6.2.2.2. An axiomatic description of the differential.

THEOREM. For any manifold M, there exists a unique sequence of linear maps
d:QIM — QITIM, ¢ =0,1,2,..., with the following properties:

(1) d®> = dod:QIM — QIT2M is always zero;

(2) fora € QIM, B € Q"M

dlaNp) = (da) NS+ (—1)%a AdB;
(3) for a function f € Q°M, df € Q' M is the differential of f as defined above.
Proof is contained in Sections 6.2.2.3 and 6.2.2.4 below.

The differential d arising from this Theorem is called sometimes the exterior differential
and sometimes de Rham differential.
6.2.2.3. Proof of uniqueness.

This is the easiest part of a proof. Since in the domin of local coordinates an arbitrary
differential form « has a form

o = Z ail...iq d.fl?il /\.../\dl’iq

1<i1 <...<ig<n

where o, . ;, is a smooth function of variables x,...,z,, and d(dz;) = 0, we must have
da = Z dailmiq VAN dl‘il VANPIA dCUiq
80@1 g
= Z Z dl’j /\d.fl?il /\.../\dl’iq
1<i1<...<ig<n \j=1
g+1

’Ll...Z ) 1
= > (-1 —Sﬁdxil/\...Ada;qu.
.772'5

1<i1 <. <dgyr T=1

we use the formula df = of d:cz The formulas above (actually, even the first of
ox;

them) show that do is uniquely deﬁned by the conditions of Theorem.
Notice that the last formula implies some formulas well known from classical multi-
variable calculus. For example,

d(Pdx + Qdy) = (2—? - 86—];) dx A dy,
P P
d(Pdx + Qdy + Rdz) = (%—g—y) dx N dy + (%—%) dx N\ dz
OR 0Q
+ (8—y_£) dy N dz,
d(Pdy N dz + Qdz Ndx + Rdx A dy) = (Z—P—f—%-ka) dx N\ dy N dz.
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6.2.2.4. Proof of existence.

We need to provide a construction of da for a given o and then check the axioms
(1)—(3) from Theorem. We will do it in two different ways, but will give the details of the
proof only for second constructions. (Traditionally, this work is left to the reader. I prefer
to give all the details, partially, to convince myself that the statement is right. Those who
do not want to participate in this game, can skip the most part of the next three pages.)

The first construction stems from the formula from 6.2.2.3: using a local coordinate
system (x1,...,2,), we assign to a form

o = E ail...iq d.fl?il /\.../\dl’iq
1<ir<...<ig<n
its differenhtial as
qg+1

. Zl...Zg...Zq+1
do= 3 3 ( T%A...Ad%qﬂ.

1<i1<.. <’Lq+1 r=1

Besides checking axioms (1)—(3) (this is not too difficult), we need to verify that da does
not depend of the choice of a coordinate system. We leave this work to a reader.

The second construction uses the definition of a differential form of degree ¢ as a
function of ¢ vector fields with values in functions (see 6.2.1). For an o € QM and
X1,...,Xg41, we need to define (do) (X1, ..., Xq41) € C°(M). This is done by means of
the so called Cartan formula:

q+1
(do)(X1, ..., Xgp1) = D> (1) ' XXy, .. KXo, Xgp1))
s=1
+ ) DX X, X X X X )
1<t<u<g+1

Example (¢ =1). da(X1, X2) = X1 (a(X32)) — Xo(a(X7)) — a([X7, X2]).
First, we need to check that this (da)(X1,..., X4+1) has necessary properties. Obvi-
ously, is is skew-symmetric and multilinear (over R). It remains to check that

(da)(Xl, ceny Xq, qu+1) = f(doz)(Xl, ey Xq, Xqul).

Here it is done:

q

(da)(X1,. ., Xg fXq1) = D (1) X (X, .. XKoo Xy, fX 1))

s=1

(—l)qu +1Oé(X17 ) XQ>
+ Z 1t+u XtyXuLXl,.--Xt---)?u-“vaqu"'l)

1<t<u<gq

Q

3 (D (X, fX ), X Xy X)
1

t=
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P I X (falXy, .. Xy, X)) + (m1)9f X g1 (a( X1, ..., X))

MMQ

Z — D fo([ Xy, X, X1, X X, Xga1)

<t<u

q
‘|‘Z t+q 1 (f)Xq—l—l+f[Xthq-l-l]le?-"Xt"'7XQ)
t=1

q+1
(1) ' X (fa(Xr, ... Kooty Xg +Z P X (X, X X))

I
M=

v}
Il
—

+ > (—1)t+“fa([Xt,Xu],X1,...)A(t...)A(u...,XqH)

1<t<u<g+1

q
+) (-1 a(X1, ... X, Xgs1) = fda(Xq,. .., Xqs1).

t=1

Next thing to do is to check the d? = 0 property. We have

q+2
(d(de))(X1,. .., Xgp2) = > (—1)* ' X (do(Xy,. .. Xs .., Xgpa))
s=1
+ ) (CDMde([X X)X, X X X )
1<t<u<qg+2

and we need to plug the Cartan formula for da into the right hand side of the last formula.
We will obtain terms of the following five types:

(1) XSXtoz(Xl,...)?s...gt...,z{(ﬁg)i

(2) Xoo([X, XoJ, X1, X Ky Ky, Xgpo) (< )

(3) X XiJ(a(Xy,. . Xy Ky AXqug)/,\ (s < t);

4) a([[Xe, Xu], Xo], X4y X Xy - X Xq+2) (t < u);

(5) al[Xs, Xu], [ X0, Xo], X1,... X, ...Xu...Xv...Xw...,Xq+2),(t < u,v < w)
where all s,t,... must be different.

Term (1) appears from the first sum of the formula above. It appears with the coeffi-

cient (—1)5*1=1 if s < ¢, and with the coefficient (—1)**, if s > t. We combine this with
term (3) which appears from the second sum with the coefficient (—1)*t. Together, they
give for every s < t, (—1)"T 1 X, X, — X, X, — [ X, X))a(X1,... X .. Xy ..., Xgp2) = 0.
Thus, terms (1) and (3) cancel.

Term (2) appears both from the first and the second sum. In the first sum, the
coefficient is (—1)*TTe=1 if t <u < s, is (=1)5TT4 if t < s < w, and is (—1)5FTiHu—1 if
s < t < u. In the second sum, the coefficient is (—1)T4T5 if s <t < w, is (—1)tTuts=1 if
t <s<wu,andis (—1)"T%*s if t < u < s. Obviously, everything here cancels.

Term (4) appears from the second sum. The coefficient is (—1)Futol if ¢ <
u < v, is (1)U if t < v < wu, and is (—1)"TTlif + < uw < v, In other

60



words, for every t < u < v there arises (—1)"T“ T ta([[ Xy, X,], Xo] — [[Xv, Xu], Xi] +
[ X, X¢], Xu), X1, ... Xy Xy .. Xy ..., Xq42) = 0 by the Jacobi identity.

At last, term (5) appears from the second sum. The coefficient is (—1)*Fvtv+w if
v<w<t<u orv<t<u<w,ort<v<w<u ort<u<v<w,and
is (—1)ttutvtw=l if 9y <t <w <wuwort <wv < u < w. In other words, for every
t < u <wv<w, there arises (—1)!T4v+% times

o] ] Xooo Xy Xy, Xgi0)
—a([Xs, Xo], [Xuy Xeo)y X1, Xy oo X Xy X, Xgh2)
+o([ X, X, [Xu, Xo], X1, X Xy Xy X Xgy2)
o[ Xu, Xol, [ Xt X, X1, X Xy Xy X Xgy2)
—a([Xu, X, [Xe, Xo), X1, Xy oo X Xy X, Xgh2)
o[ Xy, Xo), [Xo, Xu], X1, X X Xy X Xgya).

Obviously, everything cancels. Thus, d? = 0.

Next, let us turn to the multiplicative property. Let o € QIM, (3 € Q"M, and let
X1,..., Xg4r+1 € Vect(M). Consider

(dla A B (X1, Xgtrt1), (d(@) AB) (X1, ooy Xggrpr), (@ ANdB) (X1, o, Xgprt)-

The first of these three functions contains the terms of the following four types:

(1) (Xs(a(X1)B(Xy) where I = {iy <...<ig}, J={j1 <...<ygr}, {1,...,q+r+1} =

TUJU{s};

(2) a(X)(Xs(B(Xy)) where I,J, s have the same meaning;
(3) Oé([Xt,Xu],X])ﬂ(XJ) where I = {il < ... < Z'qfl}, J = {jl < ... < jr}, {1,. ..,q+

r+1} =TUJU{t u};

(4) OC(XI)/B([Xt,Xu],XJ) where I = {21 <. .. < iq}, J = {]1 < ... < jr—l}, {1, g+
r+1} =IUJU{t,u}

(we use abbreviated notations like X; = {X;,,...,X;, for I = {i1,...,i4}, etc.). The

second of the three functions above contains term (1) and (3), the third one contains the

terms (2) and (4), and it remains to compare the coefficients.

We will use the following notations: for I = {i; < ... < i,} and s ¢ I, we put
i(s) = #(iy, > s) (and similarly j(s) for J instead of I). It is clear that if we insert s into
I: {i; <...<s<...<ig}, then it acquires the number ¢ —i(s) + 1; it is clear also that
if {1,....,q+r+1} =TUJU{s}, then i(s) +j(s) =qg+r+s—1.

The term (1) appears in (d(a A 8))(X1,..., Xqtr+1) as a summand in (—1)% ! (a A
B (X1,... Xs..., Xg+r+1), and this summand corresponds to the summand o (X )3(X /)
of (¢ AB)(X1,...,Xg4r+1) where I’, J' are obtained from I, J in (1) by subtracting 1 from

all 4, j, exceeding s. The last summand bears the sign (—1)"1+"'+iq_i(s)_@ Thus, the
coefficient at the term (1) in (d(a A 5))(X1, ..., Xggry1) 18

(_1)i1+,,,+iq+s—1—i(s)—@.
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The term (2) appears in (d(a A 3))(X1,. .., Xq4r+1) with the same coefficient.

The term (3) appears in (d(a A 3))(X1,..., Xq+r+1) as a summand in (—1)"*(a A
O)([Xs, Xi], X1, - Xi Xy , Xg+r+1), and this summand corresponds to the summand
a(X1, Xp)B(X ) of (aAB) (X1, ..., Xg4r+1) where I’, J" are obtained from I, J in (3) by
adding 1 from all i,, j, less than ¢ and subtracting 1 from all i,,, j, exceeding u. Thus, the
coefficient at the term (3) in (d(a A 5))(X1, ..., Xggry1) I8

(_1)t+u+1+i1+...+z‘q_1+(qf17i(t))fi(w*@

For the term (4) in (d(aAB))(X1, ..., Xg4r+1) We repeat the same as for the term (3)
with only one change: instead a( X1, X/)3(X /) we take a(X ) 3(X1, X /) (and, certainly,
take I and J from (4), not (3)). The coefficient becomes

(= )Pt gt (a—i(0) —i(w) - 152

The term (1) in ((da)) AB) (X1, - .., Xqqr41) appears from (do) (X, ..., Xy, ..., X, )-
B(Xy). Since s in {i1,...,s,...,iq} has the number g — i(s) — 1, the coefficient at this

term is
(_1)q7i(s)+i1+...+iq+sf%
The term (2) in (aAdB) (X1, ..., Xq4r+1) appears from a(X7)-dB(Xj,,...,s,..., Xj,).

Since s in {j1,...,5,...,jr} has the number r — j(s) — 1, the coefficient at this term is

(_1)rfj(s)+i1+...+z’qf@.

T)heﬁt(erm)(i% in ((da) /ziﬁ)(X{{, ..., Xg+r+1) appears fiokrln doz(})l(il, . .l,)Xt, ey )((LS, . d,
Xi, ,) - B(Xy). Since s and ¢ in {i1,...,¢,...,u...,i4_1} have the numbers g — i(f) an
q — i(u) 4+ 1, the coefficient at this term is

(_1)(qfi(t))+(qfi(u)+1)+i1+...+iq_1+t+ufM;q“‘)
Finally, the term (4) in (d(aAB))(X1, . .., Xq+r+1) appears from o(X[)dG (X, , ..., X4,
ooy Xy, X, ). Similarly to the last computation, we have the following value for the

coefficient:
(= 1) =IO F =i (@)1 i obig = 252

A direct comparing the coefficients gives the desired relation d(a A 8) = (da) A 5+
(—1)%a A dp.

And, at the very last, axiom (3) holds automatically.
6.2.2.5. Differentials and smooth maps.

PROPOSITION. Let o: M — N be a smooth map, and let « € QIN. Then d(p*a) =
v*(da)). More algebraically: the diagram

*

VN L QiM

L L

*

Qiatly 2, Qitlpyg
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18 commutative.

Proof. First, it follows directly from Definition in 2.2.1 that ¢*(df) = d(¢* f) for every
f € C(N) = QON. Tndeed, for a € € TyM, ¢ (df))(€) = df(dypl€)) = (dyol))(f) =
E(fop)=&(@*(f)) =d(¢*(f))(&). Now, an arbitrary differential form o € Q4N is a linear
combination of the forms fdg; A ... A dggy; let a be this product. Then

©*(da) = " (df Ndgi A ... Ndgy) = @*(df) N ™(dg1) A ... AN @™ (dgy)
=d(@"(f)) Nd(e™(g1)) A ... Ad(¢™(gq)) = d(p” ( )Ad(@"(g1)) A Ad(9"(g4))
=d(@"(f) Np™(dgi) A ... Ap*(dge) = d(p™ ().

6.2.2.6. Closed forms, exact forms, de Rham cohomology.

A differential form « € Q9M is called closed, if da = 0; it is called exact, if o = dj for
some 3 € Q971 The equality d> = 0 means precisely that every ezxact form is closed. The
inverse is not true: a closed form is not necessarily exact. The simplest example is any
non-zero (locally) constant function f € C®°(M) = Q°M: it is closed, since QM = 0.
Another example: if f € C*°(S!) is a function on a circle (aka a periodic function of one
variable) and x is the angular coordinate on the circle, then the form fdx € Q'(S?) is
closed (since Q%(S') = 0), but it is exact if and only if [, f(z) dx = 0 (proof: exercise).

Let Q%L M, Q4 M be the spaces of closed and exact differential forms of degree ¢ on
M. Since Q4 M C QL M, we can form the quotient QM /QZ M; this quotient is called
the ¢-th de Rham cohomology of M and is denoted as Hx(M).

The computation of the de Rham cohomology is a problem of algebraic Topology (see
a discussion in Section 6.5.3). The most important fact is that for a compact manifold all
the cohomology spaces are finite-dimensional. Here we single out two obvious facts: if M
is connected, then H2y (M) = R (closed forms of degree 0 are precisely constant functions:
no non-zero function is exact); Hig (M) =0 for ¢ > dim M.

6.2.2.7. Other versions of the theory.

If a manifold M is not compact, we can consider differential forms with compact sup-
port, that is forms o € Q4M such that for some (not fixed) compact set K C M, o, =0
for all p € M — K. Forms with compact support form a subspace M of Q29M . Obviously,
d(QM) C QITIM; in particular, there arise “de Rham cohomology with compact sup-
port”, Hip (M) (in the definition of the latter, we use the space QM of forms which
are differentials of forms with compact support, which is not the same as Q% M N QIM).

Also, it is possible to consider differential forms whose restrictions to a submanifold
N C M (the restriction of «|y is t*a where ¢: N — M is the inclusion map) or to the
boundary OM is zero. There arise de Rham cohomologies H\i (M, N) and Hp), (M, 0M).

6.3. Integration. The Stokes formula.
6.3.1. Definition of integrals.

Our goal is to define, for an oriented n-dimensional manifold M and a form o € Q" M,
an integral f v @ € R We will have to assume also that M is compact, or, at least. the
form « is compactly supported.

6.3.1.1. The case of a domain in R".
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If U C R™ is a domain with compact closure U and f is a smooth function in a
neighborhood of U, then the integral fU a where o = fdxy A ... A dx, is define as the

usual integral from calculus: fU flxy, .. xp)dey .. day,.
6.3.1.2. Coordinate change.
Let o, ..., 2! be another coordinate system (in general, non-linear) around U. Then
6.(171 61'1
a=f(z},...,z)) <ZJ 5 :cé) A A (ZJ B xé)
j j
81‘1 8xn
= f(l'?l, e ,x/ ) .. 7 d.fﬂ;_(l) VANRAN de(n)
0y 0%,
6.(177- 1 8:ET n
zf(x’l,...,ac'n)ngn(T)- 890(’1)”' 8(’)d A...Ndxl,
TESH
/ / 8xz / /
= f(z3,...,x,,) - det g dzy A ... Ndx,,.
j

On the other hand, a formula from calculus says that

/facl,..., Ydxy .. /f:t:l,..., abs(det )dx’ldsl:;I

Comparing these two formulas we conclude that fU « is preserved by coordinate change
with positive Jacobian; in other words, fU a is dertermined by U, o, and orientation of U.

8$i
ox

/.
J

6.3.1.3. General case.

Let M be an oriented n-dimensional manifold, and let a € Q"M be a compactly
supported differential form. Let {(U;,¢;)} be an oriented atlas of M belonging to the
chosen orientation and such that all U; are compact and ;(U;) form a compact, locally
finite covering of M. Let {f;: M — [0,1]} be a partition of unity subordinated to this
covering. First, we define [ 1 (fic) as in 6.3.1.1, using the local coordinates corresponding
to the chart (Uj, ¢;) (in other words, [, fia = [, ¢;(fia) as defined in 6.3.1.1). Then we

put [y o =3 [y fie
PROPOSITION. The integral fM a is well defined.

Proof. First, since the form « is compactly supported, he sum in this definition is
finite. Let {( ],w])} and {g;} satisfy the same conditions as {(U;,y;)} and {fi}. We
denote the integrals defined using local coordinates from these two atlases (and thses two

partitions of unity) as [ Y and i Y. We have:

(the middle equality follows from the result of 6.3.1.2: the integrals [ z\(/][ figia, [ z\‘//l figja have
the same integrand and are taken over the same domain with compact closure covered by
two orientably compatible charts, (U;, ;) and (V},1;)).
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6.3.1.4. Further generalizations.

First, it is OK, if M has a boundary.

Second, if a € Q9M, and g < n, then fM a does not exist, but there exist integrals
[y = [yt aly for all oriented g-dimensional submanifolds N of M where a|y is the
restriction of a to N (see 6.2.2.7). (Notice that M does not need to be oriented or even
orientable.) Certainly, we require that N is compact, or, at least, (*« has a compact
support. It is more common to call :*« the restriction of «

We do not exclude the case when ¢ = 0. In this case, N is a discrete subset of M;
the orientation is a function e: N — {£1} (see 4.2.2); a form « of degree ¢ is a function;

the compactness condition means that o can be non-zero only at finitely many points of
N (which holds, if N is finite). The integral [, o is defined as > pen €P) - alp).

6.4. The Stokes Theorem.
6.4.1. The statement.

THEOREM (the Stokes Theorem). Let M be an n-dimensional manifold, let o €
Q=M (¢ > 1), and let N be an oriented submanifold of M such that the restrictions
alon and (da)|n are compactly supported. (We assume that ON is oriented accordingly to

the orientation of N.) Then
/da:/ a.
N ON

A poof will be given in 6.4.3.
6.4.2. Particular cases.

Some particular cases of this theorem are well known in Analysis and have canonical
names. We always assume that M =R" and 1 < ¢ < n.

Case n = 1,g = 1. Let N = [a,b], « = f, and N is oriented in such a way that
ON = b — a. Since da = f/(z) dx, the Stokes theorem assumes the form

/ f(x) de = f(b) — f(a).

This is the fundamental theorem of calculus.

CASEn =2,¢g=2. Let N =U C R? be a domain bounded by a closed smooth non-
self-intersecting curve v = ON (which may be disconnected). If N is oriented accordingly
to the standard orientation of the plane, then the outer component(s) of + are oriented
counterclockwise and the inner components of vy are oriented clockwise. If « = f(x,y) dz+

0 0
g(z,y) dy, then da = (6_g — 8_f) dx N dy. The Stokes theorem assumes the form
€ Y

B dg Of
Xy(fdl‘—l—gdy)—/(](%—a—y)dm/\dy.

This is the Green Theorem (in classical Analysis the symbol “A” is usually not used).
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CASE n = 3,¢ = 2. In this case N is a domain S on an oriented surface in R® bounded

by a closed curve ~; the orientations of S and v should be compatible. If « = fdz+gdy+

_ (99 _ 91 oh _ of oh _ 99
hdz, then da = (8:{: ay)daz/\aly—{— (896 az)daz/\dz—f— (89 9, dy N dz, and

the Stokes theorem assumes the form

/(fdx—l—gdy—l—hdz)
.

_ 99 _9of on _of oh _ 09
_/SK&L’ 8y)d$/\dy+(8a} az)dxAdz+(6y aZ)dy/\alz}.

In classical Analysis, this theorem (and not Theorem of 6.4.1) is attributed to Stokes.

CASE n = 3,¢ = 3. In this case N = U C R3 is a domain bounded by a closed
surface S (U and S are oriented coherently), « = fdy Adz + gdz Adx + hdx A\ dy, da =
of 0dg O0Oh

— 4+ =24+ — | dx ANdy N dz, and the Stokes theorem assumes the form
oxr Oy 0z

af dg oh

/(fdyAdz+gdzAda:+hda:Ady):/ — 4+ =4+ — |dx ANdy Ndz.
g v \Oxr Oy 0z

A generic name for this result is the Gauss-Ostrogradski Theorem.

COMMENTS REGARDING THE NAMES. The fundamental theorem of calculus is usually
attributed to Isaac Newton and Gottfried Leibnitz (who were involved in a hot argument
concerning the authorship of this result). Actually, it was known before these illustrious
figures; the first published proofs belong to James Gregory and Isaac Barrow (1670).
Green’s theorem is named after the English physicist George Green who used this formula
in his works (1828); as a mathematical theorem it was first singled out by Cauchy (1846).
The Gauss-Ostrogradski formula was published by Mikhail Ostrogradski (in Paris) in 1826;
as early as in 1813, it was used by Carl-Friedrich Gauss in his work on gravitation of
ellipsoids (Gauss had so many results that it was impossible for him to publish them all
in separate papers). (It is amusing that the Gauss-Ostogradski formula appeared before
the Green formula which may be regarded as a particular case of the Gauss-Ostrogradski
formula.) The Stokes formula was first published by George Stokes (1854) in his account of
the annual student’s contest for the Smith fellowship in Cambridge. Stokes was responsible
for this contest for many years, and not all the problems of this contest belonged to him. In
particular, what we call today the Stokes formula, was communicated to Stokes by William
Thompson (1850) (who claimed later that he deduced this formula from an earlier work of
Stokes). The language of differential forms and their differentials which we use here was
developed in 1899 by Elie Cartan, and the theorem which we call the Stokes theorem here
was first proved by Edouard Goursat in 1917 (although, in some form, it was apparently
known much earlier to Elie Cartan).

6.4.3. Proof of the Stokes theorem.

This is sort of unfair that such a deep theorem has such a simple proof. I will try to
give all the details, just to make the proof look slightly longer.
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We can assume that « is not zero only within one chart (U, ), and this U C R”
is contained in the cube I = {(z1,...,z,) | —1 < x; < 0Vi and is disjoint from all the
planes x; = —1 and all the planes z; :/9, except, possibly x,, = 0. We need to prove that
for o = 371 | fi(zr, .. wn)dey Ao oda o AN day, [go do = [gai @fga-1. (We assume

that « is defined in R™ but is zero in the complement of I".) First we notice that

Oé|]Rn—1 = fn(xl, .. .,acn,l,()) dl‘l VAN dl‘n,1

=30

=1

dl’i/\d.fbl/\...g;'i.../\d.fbn.

Xy

From this,

/R da_Z/ / (/ gi vﬂfn)dxi)dazl...@i...da:n
:;/—1”'/—1(“’%
:/01"'/01f”(x1""’$”1’O)dx1”'dx”1:/Rn_1o‘|R”‘1’

6.4.4. Integrals of closed and exact forms.

m,:_1>d.f171 .. @z . d.an

7

:L'i:() _f’L

PROPOSITION 1. Let M be an oriented compact m-dimensional submanifold without
boundary of an n-dimensional manifold N, and let « € Q™ N.
(1) If « is exact, then [, o= 0.
(2) If « is closed and M = OP where P is an oriented compact (m + 1)-dimensional
submanifold of N, then [, o =0.
Proof. (1) If a = dp, then [, o= [, d3= [,,,8= [,6=0.
(2) If M = 9P, then [,,a = [pda= [,0=0.
Proposition 1 creates a possibility to distinguish between exact and closed forms: if
a differential form has a non-zero integral over a closed (= compact, without boundary)
manifold, then it cannot be exact (although can be closed).
dy — yd
EXAMPLES. (1) Let N = R? — (0,0) and let a = %
T4ty
but not exact, since if S is a counterclockwise oriented unit circle centered at the origin,
then [ g =21 # 0. (Actually, a = dff where 0 is the polar angle; this implies closedness
of «, but not exactness, since # is not a (univalent) function on N; the same fact gives a
computation of the above integral.

(2). Let M be an oriented closed m-dimensional (m > 0) submanifold of R™. For
v1,...,Uym € T,M, define vol(vy,...,v,) as a signed volume of the m-dimensional par-
allelepiped spanned by vy, ..., v, (“signed” means that we take it with the sign +, if it
induces in T, M orientation compatible with the orientation of M, and with the sign —
otherwise). It is easy to understand that vol € Q™M, and that [, vol is the volume of

. This form is closed
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M (a positive number). The form vol is closed (simply because Q" ' M = 0) and is not
exact by Proposition 1.

Finally, let M, M’ be closed oriented m-dimensional submanifolds of N and «, a’ be
closed degree m differential forms of N. We say that M, M’ cobound, if there exists a
compact oriented (m + 1)-dimensional submanifold P of N such that 0P = M’ — M (the
minus sign means that the orientations of P and M are opposite). We say that the forms
a, o’ are cohomological, if the difference between them is exact, o’ — a = df; in other
words, a and o’ are cohomological, if they represent the same element of HJj; (N).

PROPOSITION 2. If M, M’ cobound and «, o are cohomological, then

[a=]

Proof. [,,a' — [,,a= [,,dB=0Dby (1) in

M’ Proposition 1.. .fM, of — [, = [pad = 0 by
) (2) in Proposition 1. Hence, [,, a = [,, &'

Thus, we can speak of integrals of de Rham

cohomology classes over closed manifolds given

up to a cobounding. Notice that it may happen

that M, M’ do not cobound, but each of them

cobounds with some M" (see the picture on the

left); then the statement of Proposition 2 still

holds).

6.5. More on de Rham cohomology.
6.5.1. Homotopy invariance.
6.5.1.1. Induced maps.

A smooth map f: M — N between two smooth manifolds induces homomorphisms
[*QIN — QIM (see 6.2.1) commuting with differentials (see 6.2.2.5). Hence, f*(Q4N) C
QLM (if da = 0, then df*a = f*da = 0) and f*(QLN) C Q4L M (if o« = df, then
ffa= f*dB = df*(3). Hence, f* gives rise to a linear map

HEp(N) = QIN/QLN — QI M/QI M = Hf, (M)

which is also denoted as f*. It is obvious that (f o g)* = ¢g* o f* and id* = id.

EXERCISE. If M and N are connected, then, for every f: M — N, f*: HRx(N) —
HY (M) is an isomorphism.

6.5.1.2. Induced maps and homotopies.

Two smooth maps f, g: M — N are called homotopic (notation: f ~ g), if there exists
a (smooth) homotopy F: M xR — N (or F: M x [0,1] — N) joining f and g, that is such
that F|M><() = f, F|M><1 =4d.

THEOREM. If f ~ g, then f* = g*.
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Proof. We need to show that for any closed form o € Q9N the forms f*«, g*« are
cohomologous, that is, the difference g*a— f*a is exact (this means that for a representative
a of arbitrary a € H{ (N), the forms f*«, g*a represent the same element of Hy (M),
that is, f*(a) = ¢g*(a)). Let F: M x R — N be a homotopy joining f and g, and let
te:M — M x R be the embedding p — (p,t). Then f = Fouy,g = Fot;. We need
to establish that ¢*(F*«) cohomologous to ¢ (F*«). We will do more: we will construct
(G°°-continuous) linear maps

h=hy: QM x R) — QI (M)
such that for any g € QIN,

dh(B) + h(dp) = 11(B) — 15(B);

applying this to f = F*a and using the fact that df = F*da = 0, we get the necessary
result.

We will need one more notation. Let P be a manifold, v € Q"P, and X € Vect P;
then the form 7,y € Q"~'P is defined by the formula

nX’Y(Xla . . '7X”r‘71) = ’Y(Xv X1, .- 'X’r’fl)-

Obviously, n, (df) = X f and n, (y A7) = (77X’Y) A+ (—1)de87y A N
We put
1 1
00 = [ (nglaes) de= [ [iing 0] a

0 . . . CL .
(here — is the “vertical vector field” on M x R, that is the derivative with respect to the

coordinate t on R). Let us prove the promised equality. For (3, we take a monomial form,
and we distinguish two cases:

(1) 8= f(z,t)dt Ndxsy N... Ndx;,_,,
(2) B = flx,t)de;, A... Ndx;,

(notice, that the operator n ol applied to a monomial form, eliminates dt, if there is a dt,
and yields 0, if there is no dt).

Case (1). In this case,

1iB=0 (since ¢y (dt) = 0),
n%ﬁ = f(x,t)dxsy Ao ANdxy,

ds = ﬁ(x,t)dl‘j/\dt/\dxil /\.../\dxiq_l,
; 6a:j

1o df = —difns = hdB = —dhB = dhj + hdB = 0 = ;3 — 133,
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Case (2). In this case,
ngB=0=h3=0,
0
dg = &f(x, t)dt ANdx;, A...Adx;, + terms without dt

0
n%dﬁ: af(a:,t)da:il/\.../\da:iq,

1
hd( = (/ gf(ac,t)dt) dri, A ... Ndx;,
0 t

= [f(z,1) = f(z,0)]dzs, A ... ANdx;, = 118 — 150

6.5.1.3. De Rham cohomology and homotopy equivalences.

A smooth map f: M — N is called a homotopy equivalence, if there exists a smooth
map g: N — M such that go f ~idys, f o g ~ idy. Manifolds M, N are called homotopy
equivalent, if there exists a homotopy equivalence M — N. (We mentioned homotopy
equivalences before, in 5.4.6, but at this moment we need more details.)

ExaMmPLES. (1) R™ is homotopy equivalent to a point (as they say, contractible).
Indeed, let f:pt — R™, f(pt) = 0, and let g be the map R™ — pt. Then go f = id and
(f o g)(R™) = 05 the latter is homotopic to id by the homotopy (z,t) — tx.

(2) R™ — 0 is homotopy equivalent to S™~!. Indeed, let f:S""! — R™ — 0 be the
inclusion map, and g: R"* —0 — S"71, g(z) = ﬁ Then go f = id, and fog is homotopic

x
to id by the homotopy (z,t) = x - ||z| .

THEOREM. If f: M — N is a homotopy equivalence, then f*HJo(N) — HAn (M) is
an tsomorphism. In partiucular, de Rham cohomologies of homotopy equivalent manifolds
are isomorphic.

Proof. Let go f ~idy; and fog ~ idy. Then f*og* = (go f)* = id” st = id and,
similarly, g* o f* =id. Thus, f*, ¢g* are inverse to each other.

6.5.1.4. Application: the Poincaré lemma.

THEOREM (the Poincaré lemma). In QIR"™, g > 0, every closed form is exact. Equiv-
alently: HL - (R™) = 0.

Proof. Theorem and Example (1) from 6.5.1.4 show that H?(R™) = H9(pt). On the
other hand, H(pt) = 0 for ¢ > dim pt = 0.

COROLLARY. On any manifold, closed forms of positive degree are locally exact.

Proof. Every point of any n-dimensional manifold M is covered by a chart (U, ¢) with
U diffeomorphic to R™. Hence, for any closed form a € Q9M, ¢ > 0, the restriction oy
is exact.

6.5.2. Examples of computation of de Rham cohomology.

The Poincaré lemma, together with computations of H{. (M) for ¢ = 0 and ¢ >
dim M, (see 6.2.2.6) provide examples of such computations. We will consider more exam-
ples here and will briefly discuss the general case in 6.5.3.
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6.5.2.1. De Rham cohomology of spheres.

THEOREM. Any closed form in Q4S8™ with q # 0,n is exact; a closed form o € Q™S™
1s exact if and only if fsn a=0.

COROLLARY. Ifn >0, then

=R, ifg=0,n
q n 9 9 )
Hpg(S ){:O, if ¢ #0,n.

Proof of Corollary. The only thing we need to add to Theorem is that there exists a
form o € Q" S™ with a non-zero integral. A construction of such form (“the volume form”)
is given in Example (2) of 6.4.4.

Proof of Theorem. The only if part of the last statement of Theorem is known to us:
if o is exact, then [ gn & = 0 (see Proposition 1 of 6.4.4). All the rest is proved by induction
with respect to n. It is possible to take for the base case n = 0, but this would require a
slight modification of the statement in this case, so we begin with the case n = 1.

If n =1, then a 1-form has the form a = f(0)df, or f(z)dxz where f is a 2m-periodic
function of 1 variable. The last form is the differential of the function g(z) = [i f(¢) dt,

and the latter is 2m-periodic if and only if fo% ft)dt = [¢a=0.
Assume now that Theorem has been proved for S™"~! and take a closed form a €
Q45™ g > 0 such that if ¢ = n, then fsna = 0. Cover S™ by two open sets, U; =

1 1
{xn+1 > —5} and Uy = {a:n+1 < 5} (see

the picture on the left). Then the forms

aly, € QIU; are exact by the Poincaré lem-
3 ma, o|y, = dB;, 3; € Q27 U;. The form
Bo — 1 € QITL(U; NUy) is closed (since
dBy = df2). The intersection Uy N Uy is
homotopy equivalent to S~ ! (and the in-
clusion map S”~! — U;NU; is a homotopy
equivalence). Hence, if g—1 # 0,n—1, then
the form (5 — (3 is exact (by the induction
hypothesis). The same is true, however, for
qg—1=0,n—1:if g—1=0, then f; — 3
) is a constant, and we can make it zero by

adding an appropriate constant to (. If

q—1=n—1,then [¢, .01 = [, dB1 = [, o and, similarly, [, . B2 = [,. a where
+ + -
D" are oriented by the orthogonal projections D} — D™. But 0 = fsn o= fDi o — sz «

Uy

U,

(since S™ is oriented coherently with D and non-coherently with D™). Hence [, o =
+

Jpn @ Jou-1B1 = Jgu-1 P2 = [gu_1(B2 — B1) = 0. Thus, the form § — (3 is exact in all
cases; let 3y — By = dry, v € QI72(U; NUy).

Let f1, f2:S™ — [0,1] be smooth functions such that supp f; C U; and f; + fo = 1
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(see 1.3.3.4). Define ¢; € Q972U; by the formulas

o — foy onU; NUs, S fiy on U NUs,,
1 0 Ol’lUl—UQ, 2 0 OnU2_U]_.

and put ﬁi = ﬁl - dEl, Bé = Bg + d&g. Then, on U1 N UQ,
By — By =P1 —dey — Bo — deg = 1 — P2 — d(f1 + fa)y — B1 — B2 — dy =0,
thus 31 and (3» agree on U; N Us, thus they merge into one form 3 € Q9-1S™ and

g — dfy =dp; = a on Uy,
dfy = dps = a on U,,

that is, d3’ = a and the form « is exact.
6.5.2.2. Compactly supported cohomology of R".
THEOREM. Let o € QY

cl,c

assume that fRnO‘ = 0. Then a € Q& .", that is, o is a differential of a compactly
supported form.

R™, that is, a is a closed compactly supported form; if ¢ = n,

Proof. If ¢ = 0, then a closed form is a constant function, and if it is compactly
supported, then it is zero. If n = ¢ = 1, then a = f(z)dz and o = dg where g(x) =
J_ f@)dt, and if [7°_ f(t)dt = 0, then g is a compactly supported function. So we
need to consider the cases when ¢ > 0 and n > 1. Let suppa C B where B is an open
ball in R™ centered at 0. By the Poincaré lemma, o« = df where 3 € Q4~'R". Since
suppa C B, f is closed in R” — B. But R® — B is homotopy equivalent to 0B ~ S™ 1.
Hence, if 0 < ¢ — 1 < n — 1, then 8 € QI"1(R™ — B) is exact, 3 = dvy, v € Q72(R" — B)
(see 6.5.2.1). The same is true, if ¢ — 1 = 0 or n — 1. Indeed, if ¢ —1 = 0, then 3 is a
constant function in R™ — B, and we can make this constant zero by subtracting a constant
from B € QI7IR". If g—1=n—1, then [,308= [5d8 = [Fa= g, o =0, thus again 3
is exact in R™ — B (see 6.5.2.1).

Choose a smooth function f:R™ — [0, 1] equal to 0 in a neighborhood of B and equal
to 1 in the complement of an open ball B’ D B. Let 3 = 3 — d(f~) (we can regard fv
as a form defined in the whole space R™). Then df’ = dB = aand ' = 3 —dy =0 in
R™ — B’, thus ' is compactly supported.

COROLLARY.

| 2R, if g =n,
H%R’C(R ){:0, if ¢ # n.

Proof. In addition to Theorem, we need only to remark that any form from g, R"
has zero integral over R™ and that there are forms in Q7R"™ with a non-zero integral over
R". The first follows from the Stokes theorem (if @ = d3,supp 8 C B, then [p a = [Fa =
J5dB = [,58 =0), for the second, take o = f(z)dx1 A ... A dx, where f is a compactly

supported non-negative, non-zero function.

6.5.2.3. Highest degree cohomology.
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6.5.2.3.1. The case of compact orientable manifolds.

THEOREM. Let M be an n-dimensional connected compact oriented manifold. A
differential form a of degree n on M is exact if and only if fM a=0.

Proof. The only if part is contained in 6.4.4: if « is exact, then fMa = 0. Let

now [, o = 0. Our goal is to construct a decomposition o = Zivzl a; such that for
every 7, (1) supp «a; is contained in an open set W; C M diffeomorphic to R"™, and (2)
fWi a; = [, a; = 0. As soon as we do it, we can complete the proof of Theorem: Theorem
of 6.5.2.2 implies that there is a 5; € Q"' M with supp 8; C W; and df5; = o;. It remains
to put = > f; and to observe that df = a.

We begin with an oriented atlas {(U;, ¢;)} of M with all U; diffeomorphic to R"™. Then
we shrink the cover {p;(U;)} of M to {V;} with compact V; C U; and take the partition
of unity {f;} subordinated to {V;}. Then we put o/, = f;«a; the only reason why we cannot
take a; = « is that the integrals ¢; = f% a = fM o} have no reason to be zero. All we
have is Y, ¢; = [, (-, %) = [, =0.

Choose a small open ball d C M and a form v € Q"M with supp~y C d such that
J 4= S 1Y = 1 (obviously, exists). Then we take for W; a thin neighborhood of V;, d and
a path between these two domains (see the picture below).

The form «; is defined as o, on V;, as —¢;y on d. The conditions above are all satisfied
(>°; i = a, because ). ¢; =0).

COROLLARY. If M is a connected compact orientable manifold (without boundary),
then the function [,,;: Q"M — R establishes an isomorphism Hg (M) = R.

6.5.2.3.2. The non-orientable case.

THEOREM. Let M be a connected compact non-orientable manifold. Then Hg (M) =
0 (equivalently: every closed form of degree n on M is exact).

Proof. We define U;, p;,V;, and f; precisely as in the proof in 6.5.2.3.1, only we,
certainly, drop the condition that the atlas is oriented. Then we put o = f;a and ¢; =
fVi «; (no integrals over M!). Notice that the sum ), ¢; is not necessarily zero. Next,
we choose an oriented small ball d and a form v with [ 4y = 1 (it is important that the
choice of d is arbitrary). W; is defined as in 6.5.2.3.1 (see the picture above), then we put
a; = &1+ ¢;7y (the sign is plus, if the orientation of W; compatible with the orientation of
V; is also compatible with the orientation of d and minus otherwise) and observe as above
that «; is a differential of a form with a compact support in W;. Hence «; is exact in M,
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as well as ). o;. However, the last sum is not a: it is o plus a constant times . So, we
need to prove that ~ is also exact.

According to Theorem in 5.4.4.5, the manifold M can be obtained from a ball by
attaching handles. Since the ball is orientable and M is not, there should be a handle
attaching which turns an orientable manifold into a non-orientable manifold. This may
happen only if a handle is attached to some N along a disconnected subset of a connected
component of N. First, this shows that the handle must have index 1. Second, N must
contain two small balls, d and d’ which are contained in a bigger ball D C N such that
all D,d, and d’ have coherent orientations, and also in a ball D’ in N plus the handle
such that D’ has an orientation coherent with that of d and not coherent with that of d’
(see the picture below). We do need N anymore, all we need is the balls d,d’, D, D' ¢ M
with the orientations as described above. We consider v,~’ € Q"M with supports in d, d’
and [,v = [, 7 =1 (with respect to the orientations of d and d’). Then we also have
Jo(v=7") =0, [, (v +7') = 0 (with respect to the orientations of D and D’). This
implies that v — +’ is the differential of a form compactly supported in D, v + v’ is the
differential of a form compactly supported in D’, so both v —+' and v + ' are exact in
M hence v (as well as 7’) is exact in M.

6.5.2.3.3. The non-compact case.

THEOREM. Let M be a connected non-compact n-dimensional manifold (orientable or
not). Then Hpp (M) = 0.

I will not give a full proof of this result, but it is not hard, if one uses an elementary
Lemma from the graph theory.

LEMMA. Let T be an infinitely countable connected graph without multiple edges and
loops and with all vertices having finite order. Orient all the edges. Then for every function
f:Vertices — R there exists a function g: Edges — R such that for any vertex v,

foy= > gleg= D gle)

e,end(e)=v e,start(e)=v
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(where e is the edge beginning at start(e) and ending at end(e).
Proof of Lemma: exercise.

Proof of Theorem. Suppose that M is oriented (it is not really important). Let
a € QM. Construct a compact locally finite cover {U; | i = 1,2,...} such that U; ~ R"
and a partition of unity { f;} subordinated to this cover. Let o = f;v and let ¢; = [, . =
J 1 @ Consider the graph with vertices v; with v; and v;, j # i joined by an edge, e;;, if
UiNU; # (. We orient e;; from v; to v;, if i < j. Let f(v;) = ¢;, and let g be a function
delivered by Lemma. Put g(e;;) = by;. For every i,j with j #4,U; NU; # 0, pick a small
disc d;;, di; C U; NU; and a form ~;; with suppv,;; C U; N U; and fd” vij = 1. Then
put a; = o) + ZKZ. bijvij — 2j>i bi;7vi;- Obvious observations: (1) suppa; C Uj; (2)
Sy i = fU,- p =c¢i+ i bij — D505 =05 (3) X0, = >, o = . The last equality
is true, because every n;; appears in ) . a; twice: once with the coefficient b;; and once
with the coefficient —b;;. Thus, the form «; is the differential of some form (3; supported
in U, and a =dg, 8=, 6.
6.5.3. Further discussion of the de Rham cohomology. The de Rham theorem.

The idea of the computation of the de Rham cohomology of spheres in 6.5.2.1 can
be applied to many other manifolds, like products of spheres, or CP™. (For the complex
projective space CP™ one can use the standard covering by n + 1 affine subspaces and
prove that a closed form a of odd degree on CP" is always exact, and the closed form
a of even degree 2m is exact if and only if f(C pm @ = 0.) But topology possesses some
way more efficient methods for that. First of all, thee are many different constructions
of cohomology in topology (singular cohomology, Cech cohomology, etc., etc.), and there
are strong uniqueness theorems which assert that for sufficiently good spaces (certainly,
including manifolds) all constructions yield the same results. The theorem stating that the
de Rham cohomology of (arbitrary) manifold M is isomorphic to the singular cohomology
(with coefficient in R) is called the de Rham theorem. Its standard proof is based on the
same geometric ideas as the computations of 6.5.2.1, but technically belongs to the sheaf
theory.

Within the theory of manifolds, the expectable result would be a proposition that
a closed form on a manifold is exact if and only if its integrals over compact orientable
submanifolds without boundary are all zero. Unfortunately, in this nice form the theorem
is false. It is true for forms of small degree (up to 6) or large degree (1 or 2 less than the
dimension of the manifold); to make it true for all degrees, we have to consider integrals
over manifolds with some kind of singulaities. Here we must restrict ourselves to the
standard hypocritical excuse that all these fact are not within our reach is this course.

APPENDIX
Proof of Sard’s Theorem

From Milnor’s “Topology from the differential viewpoint.”

First, let us recall the statement:

THEOREM OF SARD. Let f:U — R" be a smooth map, with U open in R™, and let
C be the set of critical points, that is, the set of all x € U with rankd,f < n. Then
f(C) C R™ has measure zero.
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Proof: induction by m!). Note that the statement makes sense for m > 0,n > 1. To
start the induction, the theorem is certainly true for n = 0.

Let €7 C C denote the set of all x € U such that d, f = 0, that is, all first partial
derivatives of all coordinate functions of f are zeroes. More generally, let C; denote the
set of all x such that all partial derivatives of all coordinate functions of f of order < ¢
vanish at x. Thus, we have a descending sequence of closed sets,

CoO>CiDCyDC3D ... .

The proof will be divided into three steps as follows.

STEP 1. The image f(C — C1) has measure zero.
STEP 2. The image f(C; — C;4+1) has measure zero for i > 1.
STEP 3. The image f(C%) has measure zero for k sufficiently large.

(If f is real analytic, then (), C; = () unless f is constant on an entire component of
U; hence, in this case, it is sufficient to carry out Steps 1 and 2.)

Proof of Step 1. This step is the hardest. We may assume n > 2, since if n = 1,
then C' = C;. We will use the following well known Fubini’s theorem: a measurable set
A CR" =R xR" ! has measure zero, if AN (t x R"™1) has measure zero for everyt € R.

For each T € C' — €y we will find an open neighborhood V' C R™ such that f(V N C)
has measure zero. Since C' — (' is covered by countably many of these neighborhoods, this
will prove that f(C — C7) has measure zero.

Since T ¢ C1, there is some partial derivative, say a—fl, which is not zero at . Consider
x

the map h:U — R™ defined by h(z) = (f1(x),z2,... ,:zl;m). Since dzh is non-singular, h
maps some neighborhood V' of T diffeomorphically onto an open set V’. The composition
g = foh™! will then map V' into R™. Notice that (since h is a diffeomorphism), the set
C’ of critical points of ¢ is precisely h(V N C'); hence the set g(C’) of critical values of g is
equal to f(V NC).

For each (t,xs,...,2,) € V', note that g(t,xs,...,z,) belongs to the hyperplane
t x R*~t c R” (if h(z) = (t,22,...,7m), then fi(z) =t and g(t, 7o, ...,2) = f(x) =
(fi(x), fa(x), ..., fu(z)) = (& fo(x),..., fp(x))); thus g carries hyperplanes into hyper-
planes. Let

gt xR HNV -t x R™!

denote the restriction of g. Note that a point of t x R™~! is critical for ¢* if and only if it
is critical for g; for the Jacobian matrix of g has the form

1 0
Bg"} = |, [o9
i 8a:j

1) Actually, the cases where m < n are comparatively easy (see Section 3.3 of these
notes); our proof, however, does not make much difference between these cases and the
general case.
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By the induction hypothesis, the set of critical values of g* has measure zero in ¢ x R"~1.
Therefore the set of critical values of g intersects each hyperplane t x R"~! in a set of
measure zero. This set g(C”) is measurable, since it can be expressed as a countable union
of compact subsets. Hence, by Fubini’s theorem, the set g(C’) = f(V N C) has measure
zero, and Step 1 is complete.

Proof of Step 2. For each T € Cy — Ckyq, there is some (k + 1)-st deriative,
"t fs _ " f,
Oz, ...0xg, Oxg, ... 0z, .,
ow
0xs,
defined by h(z) = (w(x),z2,...,Z:,) carries some neighborhood V' of  diffeomorphically
onto an open set V’. Note that h carries Cj, NV into the hyperplane 0 x R™~!. Again
we consider g = foh™1: V' — R™. Let g: (0 x R™ 1) NV’ — R™ denote the restriction
of g. By induction, the set of critical values of § has measure zero in R". But each point
in h(Cx NV) is certainly a critical point of g (since all derivatives of order < k vanish).
Therefore gh(C,NV) = f(CrNV) has measure zero. Since Cy, —Cyy1 is covered by finitely

many such sets V, it follows that f(Cy — Ci41) has measure zero.

Proof of Step 3. Let I"™ C U be a cube with edge §. If k is sufficiently large (k > n_ 1,
p

vanishes

, which is not zero. Thus the function w(z)

at =, but does not. Suppose, for definiteness, that s; = 1. Then the map h: U — R™

to be precise) we will prove that f(Cy N I™) has measure zero.
From Taylor’s theorem, the compactness of I™, and the definition of C}, we see that
f(z+h)= f(x) + R(x, h) where

1R, )| < |2+ (1)

forx € CyNI™",x+ h € I". Here c is a constant which depends only on f and /™. Now

4]
subdivide I™ into r™ cubes of edge — Let I; be a cube of the subdivision that contains a
r

point x of Ci. Then any point of I; can be written as x + h with
0
bl < V- . 2)

From (1) it follows that f(I;) lies in a cube of edge kLH
r

a = 2¢(y/nd)¥ 1 is constant. Hence, f(Cj N I™) is contained in a union of at most r™
cubes having total volume

centered about f(z) where

Vol < r™ ( )p _ Py p

rkt1

Ifk+1> B, then evidently Vol tends to 0 as r — oo; so f(Ckx N I™) must have measure

zero. This completes proof of Sard’s theorem.
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