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Abstract

We study how correlations in the random fitness assignment may affect the structure of fitness landscapes, in three classes of fitness

models. The first is a phenotype space in which individuals are characterized by a large number n of continuously varying traits. In a

simple model of random fitness assignment, viable phenotypes are likely to form a giant connected cluster percolating throughout the

phenotype space provided the viability probability is larger than 1=2n. The second model explicitly describes genotype-to-phenotype and

phenotype-to-fitness maps, allows for neutrality at both phenotype and fitness levels, and results in a fitness landscape with tunable

correlation length. Here, phenotypic neutrality and correlation between fitnesses can reduce the percolation threshold, and correlations

at the point of phase transition between local and global are most conducive to the formation of the giant cluster. In the third class of

models, particular combinations of alleles or values of phenotypic characters are ‘‘incompatible’’ in the sense that the resulting genotypes

or phenotypes have zero fitness. This setting can be viewed as a generalization of the canonical Bateson–Dobzhansky–Muller model of

speciation and is related to K-SAT problems, prominent in computer science. We analyze the conditions for the existence of viable

genotypes, their number, as well as the structure and the number of connected clusters of viable genotypes. We show that analysis based

on expected values can easily lead to wrong conclusions, especially when fitness correlations are strong. We focus on pairwise

incompatibilities between diallelic loci, but we also address multiple alleles, complex incompatibilities, and continuous phenotype spaces.

In the case of diallelic loci, the number of clusters is stochastically bounded and each cluster contains a very large sub-cube. Finally, we

demonstrate that the discrete NK model shares some signature properties of models with high correlations.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The notion of fitness landscapes, introduced by a
theoretical evolutionary biologist Wright (1932) (see also
Kauffman, 1993; Gavrilets, 2004), has proved extremely
useful both in biology and well outside of it. In the
standard interpretation, a fitness landscape is a relationship
between a set of genes (or a set of quantitative characters)
and a measure of fitness (e.g. viability, fertility, or mating
e front matter r 2007 Elsevier Ltd. All rights reserved.
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success). In Wright’s original formulation the set of genes
(or quantitative characters) is the property of an individual.
However, the notion of fitness landscapes can be general-
ized to the level of a mating pair, or even a population of
individuals (Gavrilets, 2004).
To date, most empirical information on fitness land-

scapes in biological applications has come from studies of
RNA (e.g., Schuster, 1995; Huynen et al., 1996; Fontana
and Schuster, 1998), proteins (e.g., Lipman and Wilbur,
1991; Martinez et al., 1996; Rost, 1997), viruses (e.g., Burch
and Chao, 1999, 2004), bacteria (e.g., Elena and Lenski,
2003; Woods et al., 2006), and artificial life (e.g., Lenski
et al., 1999; Wilke et al., 2001). The three paradigmatic
landscapes—rugged, single-peak, and flat—emphasizing
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particular features of fitness landscapes have been the focus
of most of the earlier theoretical work (reviewed in
Kauffman, 1993; Gavrilets, 2004). These landscapes have
found numerous applications with regards to the dynamics
of adaptation (e.g., Kauffman and Levin, 1987; Kauffman,
1993; Orr, 2006a, 2006b) and neutral molecular evolution
(e.g., Derrida and Peliti, 1991).

More recently, it was realized that the dimensionality of
most biologically interesting fitness landscapes is enormous
and that this huge dimensionality brings some new
properties which one does not observe in low-dimensional
landscapes (e.g. in two- or three-dimensional geographic
landscapes). In particular, multidimensional landscapes are
generically characterized by the existence of neutral and
nearly neutral networks (also referred to as holey fitness
landscapes) that extend throughout the landscapes and that
can dramatically affect the evolutionary dynamics of the
populations (Gavrilets, 1997; Gavrilets and Gravner, 1997;
Reidys et al., 1997; Gavrilets, 2004; Reidys et al., 2001;
Reidys and Stadler, 2001, 2002).

An important property of fitness landscapes is their
correlation pattern. A common measure for the strength of
dependence is the correlation function r measuring the
correlation of fitnesses of pairs of individual at a distance
(e.g., Hamming) d from each other in the genotype (or
phenotype) space

rðdÞ ¼
cov½wð:Þ;wð:Þ�d

varðwÞ
(1)

(Eigen et al., 1989). Here, the term in the numerator is the
covariance of fitnesses of two individuals at distance d, and
varðwÞ is the variance in fitness over the whole fitness
landscape. For uncorrelated landscapes, rðdÞ ¼ 0 for d40.
In contrast, for highly correlated landscapes, rðdÞ decreases
with d very slowly.

The aim of this paper is to extend our previous work
(Gavrilets and Gravner, 1997) in a number of directions
paying special attention to the question of how correlations
in the random fitness assignment may affect the structure
of fitness landscapes. In particular, we shed some light
on issues such as the existence and number of viable
genotypes, as well as the number and size of the clusters of
viable genotypes. To this end, we introduce a variety of
models, which could be divided into two essentially
different classes: those with local correlations, and those
with global correlations. As we will see, techniques used
to analyze these models, and answers we obtain, differ
significantly. We use a mixture of analytical and computa-
tional techniques; it is perhaps necessary to point out that
these models are very far from trivial, and one is quickly
led to outstanding open problems in probability theory and
computer science.

We start (in Section 2) by briefly reviewing some results
from Gavrilets and Gravner (1997). In Section 3 we
generalize these results for the case of a continuous
phenotype space when individuals are characterized by a
large number of continuously varying traits such as size,
weight, color, or the concentrations of some gene products.
The latter interpretation of the phenotype space may be
particularly relevant given the rise of proteomics and the
growing interest in gene regulatory networks.
The main idea behind our local correlations model

studies in Section 4 is fitness assignment conformity.
Namely, one randomly divides the genotype space into
components which are forced to have the same phenotype;
then, each different phenotype is independently assigned a
random fitness. This leads to a simple two-parameter
model, in which one parameter determines the density of
viable genotypes, and the other the correlations between
them. We argue that the probability of existence of a giant
cluster (which swallows a positive proportion of all viable
genotypes) is a non-monotone function of the correlation
parameter and identify the critical surface at which this
probability jumps almost from 0 to 1. In Appendix B we
also investigate the effects of interaction between con-
formity structure and fitness assignment.
Section 5 introduces a class of models where genotypes

are eliminated due to random incompatibilities between
alleles. These models are characterized by global correla-
tions. When there are only two alleles at each locus, the
models are equivalent to random versions of the SAT
problem, which is the canonical constraint satisfaction
problem in computer science. In general, a SAT problem
involves a set of Boolean variables and their negations that
are strung together with OR symbols into clauses. The
clauses are joined by AND symbols into a formula. A SAT
problem asks one to decide, whether the variables can be
assigned values that will make the formula true. Arguably,
SAT is the most important class of problems in complexity
theory. In fact, the general SAT problem was the first
known NP-complete problem and was established as such
by Cook (1971). An important special case, K-SAT, has the
length of each clause fixed at K. Even considerable
simplifications, such as 3-SAT (see Section 5.4), remain
NP-complete, although 2-SAT (see Section 5.1) can be
solved efficiently by a simple algorithm. See e.g. Korte and
Vygen (2005) for a comprehensive presentation of the
theory. Difficulties in analyzing random SAT problems, in
which formulas are chosen at random, in many ways
mirror their complexity classes, but even random 2-SAT
presents significant challenges (de la Vega, 2001; Bollobás
et al., 1994). In our present interpretation, the main reason
for these difficulties is that correlations are so high that the
expected number of viable genotypes may be exponentially
large, while at the same time the probability that even one
viable genotype exists is very low. In Section 5, we show
that the high correlations in the random 2-SAT model
essentially force the landscape to either have no viable
genotypes or else to have fairly large sub-cubes contained
within any cluster of viable genotypes. Moreover, the
number of such clusters will be, in a proper interpretation,
finite. The theory for higher order incompatibilities is
closely related and we briefly review the existing literature
for 3-SAT. We also describe pairwise incompatibility
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models on multiallelic genotype spaces and continuous
phenotype spaces where we address the question of
existence of viable individuals.

In Section 6 we demonstrate that the discrete NK model
shares some signature properties of models with high
correlations. The proofs of our major results are relegated
to Appendices A–E.

We summarize our main findings, provide their intuitive
explanations, and briefly discuss their biological signifi-
cance at the end of each section. Our most general results,
their theoretical and biological significance, implications,
and limitations are discussed in Section 7.
2. The basic case: binary hypercube and independent binary

fitness

We begin with a brief review of the basic setup, from
Gavrilets and Gravner (1997) and Gavrilets (2004). There
are n diallelic loci with alleles 0 and 1. Each genotype is
represented by a binary sequence of length n. The genotype

space, i.e. the set of all possible genotypes, can be
represented by an n-dimensional binary hypercube G. In
this space, genotypes are linked by edges induced by bit-
flips, i.e., mutations at a single locus, for example. For
n ¼ 4, a sequence of mutations might look like

000021000210012110121100.

The (Hamming) distance dðx; yÞ between genotypes x and y

is the number of loci in which x and y differ or,
equivalently, the least number of mutations which connect
x and y.

The fitness of each genotype x is denoted by wðxÞ. We
will describe several ways to prescribe the fitness w at
random, according to some probability measure P on all
22

n

possible assignments. Then we say that an event An

happens asymptotically almost surely (a.a.s.) if its prob-
ability PðAnÞ ! 1 as n!1. Typically, An will capture
some important property of (random) clusters of geno-
types.

We will commonly assume that fitness w takes only two
values so that each genotype x is either viable (wðxÞ ¼ 1) or
inviable (wðxÞ ¼ 0). As a natural starting point, Gavrilets
and Gravner (1997) considered uncorrelated landscapes, in
which wðxÞ is chosen to be 1 with probability p, for each x

independently of others. Thus, p can be viewed as the
probability that a random combination of genes results in a
viable individual. Such binary fitness assignment is not as
restrictive as one might expect. If fitness were to be a
random number between 0 and 1, then p could be
interpreted as the width of an acceptable ‘‘fitness band’’
(Gavrilets and Gravner, 1997; Gavrilets, 2004). We
continue to refer to viable genotypes for the rest of this
section and note that this is a well-studied problem in
mathematical literature, although it presents considerable
technical difficulties and some issues are still not comple-
tely resolved.
Given a particular fitness assignment, viable genotypes
form a subset of G, which is divided into connected
components or clusters. For example, with n ¼ 4, if 0000 is
viable, but its four neighbors 1000, 0100, 0010, and 0001
are not, then it is isolated in its own cluster.
Perhaps the most basic result determines the connectivity

threshold (Toman, 1979): when p41
2
, the set of all viable

genotypes is connected a.a.s. By contrast, when po1
2
, the

set of viable genotypes is not connected a.a.s. This is easily
understood, as the connectedness is closely linked to
isolated genotypes, whose expected number is 2npð1� pÞn.
This expectation makes a transition from exponentially
large in n to exponentially small at p ¼ 1

2
. The events fx is

isolatedg, x 2 G, are only weakly correlated, which implies
that when po1

2
there are exponentially many isolated

genotypes with high probability, while when p41
2
, a

separate argument shows that the event that the set of
viable genotypes contains no isolated vertex but is not
connected becomes very unlikely for large n. This is
perhaps the clearest instance of the local method: a local
property (no isolated genotypes) is a.a.s. equivalent to a
global one (connectivity).
Connectivity is clearly too much to ask for, as p above 1

2

is not biologically realistic. Instead, one should look
for a weaker property which has a chance of occurring at
small p. Such a property is percolation, a.k.a. existence
of the giant component. For this, we scale p ¼ l=n, for a
constant l. When l41, the set of viable genotypes
percolates, that is, it a.a.s.contains a component of at
least c � n�12n genotypes, with all other components of at
most polynomial (in n) size. When lo1, the largest
component is a.a.s. of size Cn. Here and below, c and C

are some constants. These are results from Bollobás et al.
(1994).
The local method that correctly identifies the percolation

threshold is a little more sophisticated than the one
for the connectivity threshold, and uses branching pro-
cesses with Poisson offspring distribution—hence we
introduce notation Poisson(l) for a Poisson distribu-
tion with mean l. Viewed from, say, genotype 0 . . . 0,
the binary hypercube locally approximates a tree with
uniform degree n. Thus viable genotypes approximate
a branching process in which every node has the
number of successors distributed binomially with para-
meters n� 1 and p, hence this random number has mean
about l and is approximately Poisson(l). When l41, such
a branching process survives forever with probability
1� d40, where d depends on l and is given by the implicit
equation

d ¼ elðd�1Þ. (2)

(e.g., Athreya and Ney, 1971). Large trees of viable
genotypes created by the branching processes which
emanate from viable genotypes merge into a very large
(‘‘giant’’) connected set. On the other hand, when lo1 the
branching process dies out with probability 1.
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The condition l41 for the existence of the giant
component can be loosely rewritten as

p4
1

n
. (3)

This shows that the larger the dimensionality n of the
genotype space, the smaller values of the probability of
being viable p will result in the existence of the giant
component. Biological populations can evolve along this
giant cluster by mutation and random drift and can diverge
dramatically without the need to cross any fitness valleys or
any help from selection. See Gavrilets and Gravner (1997);
Gavrilets (1997, 2004); Skipper (2004); Pigliucci and
Kaplan (2006); Wilkins (2007) for discussions of biological
and philosophical significance and implications of this
important result.

3. Percolation in a continuous phenotype space

In this section we assume that individuals are character-
ized by n continuous traits, labeled 1; 2; . . . ; n (such as size,
weight, color, or concentrations of particular gene pro-
ducts), each of which can have values between 0 and 1.
A phenotype is therefore given by n trait-values, that is, by
numbers z1; . . . ; zn 2 ½0; 1�. Let P ¼ ½0; 1�

n be the phenotype

space, i.e., the set of all possible phenotypes.
We begin with a modification of the model of

independent binary fitness assignment used in the previous
section. First, we choose N points x1; . . . ; xN 2 P uni-
formly at random where N is a Poisson(l) random variable.
(This construction is known as Poisson point location.)
Points x1; . . . ;xN will be interpreted as ‘‘peaks’’ of equal
height in the fitness landscape. Note that in this section,
parameter l gives the expected number of peaks in the
phenotype space. Second, we declare any phenotype within
r of one of the peaks, where r is a small positive number,
viable and any phenotype not within r of one of the peaks
inviable. Parameter r can be interpreted as measuring how
harsh the environment is. For simplicity, we will assume
‘‘within r’’ to mean that ‘‘every coordinate differs by at
most r.’’ Note that this makes the set of viable phenotypes
correlated, albeit the range of correlations is limited to 2r.

Our most basic question is whether a positive proportion
of viable phenotypes is connected together into a giant
cluster. Note that the probability p that a random point in
P is viable is equal to the probability that there is a ‘‘peak’’
within r from this point. Therefore,

p ¼ 1� exp½�lð2rÞn� � lð2rÞn.

This is also the expected combined volume of viable
phenotypes.

We will consider peaks xi and xj to be neighbors if they
share a viable phenotype, that is, if their r-neighborhoods
overlap; and we consider them to be connected if they are
linked by a chain of consecutively neighboring peaks. By
the standard branching process comparison, the necessary
condition for the existence of a giant cluster is that a peak x
neighbors more than one other peak on the average. All
peaks within 2r of the focal peak are its neighbors.
Therefore, the expected number of peaks neighboring x is

n ¼ l � ð4rÞn,

and n41 is necessary for percolation. As demonstrated by
Penrose (1996) (for a different choice of the norm, but the
proof is the same), this condition becomes sufficient when n

is large.
If n41 and fixed, then a.a.s. a positive proportion of all

peaks (that is, cN peaks, where c ¼ cðnÞ40) are connected
in one ‘‘giant’’ component, while the remaining connected
components all have size of order log N. On the other
hand, if no1, all components a.a.s. have size of order
log N.
Note that the expected number l of peaks in P can be

written as n � ð4rÞ�n. Thus, the condition n41 for the
existence of the giant component of viable phenotypes can
be loosely rewritten as

p4
1

2n . (4)

This shows that viable phenotypes are likely to form a large
connected cluster even when one is very unlikely to hit one
of them at random, if n is even moderately large. The same
conclusion and the same threshold are valid if instead of
n-cubes we use n-spheres of a constant radius.
Thus, dramatic divergence in phenotype without any loss

in fitness is possible if the dimensionality of the phenotype
space is sufficiently large. The percolation threshold in the
continuous phenotype space given by inequality (4) is much
smaller than that in the discrete genotype space which is
given by inequality (3). For example, the percolation
threshold in the 10-dimensional continuous space P is
similar to that in the genotype space G corresponding to
1024 diallelic loci. An intuitive reason for this is that
continuous space offers a viable point a much greater
opportunity to be connected to a large cluster. Indeed, in
the discrete genotype space G there are n neighbors per
each genotype. In contrast, in the continuous phenotype
space P, the ratio of the volume of the space where
neighboring peaks can be located (which has radius 2r) to
the volume of the focal n-cube (which has radius r) is 2n.

4. Percolation in a correlated landscape with phenotypic

neutrality

The standard paradigm in biology is that the relationship
between genotype and fitness is mediated by phenotype
(i.e., observable characteristics of individuals). Both the
genotype-to-phenotype and phenotype-to-fitness maps are
typically not one-to-one. Here, we formulate a simple
model capturing these properties which also results in a
correlated fitness landscape. Below we will call mutations
that do not change phenotype conformist. These mutations
represent a subset of neutral mutations that do not change
fitness.
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Fig. 1. A four-dimensional example. (a) Start with the four-dimensional

hypercube. (b) On the first step, create conformist clusters by randomly

eliminating each edge with probability 1� q. In the example, there are

seven conformist clusters left. (c) On the second step, remove each

conformist cluster with probability 1� p; the vertices to be removed are

black. In the example, there are three viable conformist clusters left. (d)

The remaining viable genotypes have nearest neighbors connected by

edges. In the example, all remaining viable genotypes are connected in a

single component.
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We propose the following two-step model. To begin the
first step, we make each pair of genotypes x and y in a
binary hypercube G independently conformist with prob-
ability qd where d ¼ dðx; yÞ is the Hamming distance
between x and y. We then declare any pair x and y to
belong to the same conformist cluster if they are linked by a
chain of conformist pairs. This version of long-range
percolation model (cf., Berger, 2004; Biskup, 2004) divides
the set of genotypes G into conformist clusters. We
postulate that all genotypes in the same conformist cluster
have the same phenotype. Therefore, genetic changes
represented by a change from one member of a conformist
cluster to another (i.e., single or multiple mutations) are
phenotypically neutral. In the second step, we make each
conformist cluster independently viable with probability
p ¼ l=n. This generates a random set of viable genotypes,
and we aim to investigate when this set has a giant
connected component.

To illustrate our model, we can interpret the ‘‘genotype’’
as a linear RNA sequence. This sequence folds into a three-
dimensional molecule which has a particular structure, and
corresponds to our ‘‘phenotype.’’ Finally, the molecule
itself has a particular function, e.g., to bind to a specific
part of the cell or to another molecule. A measure of how
well this can be accomplished is represented by our
‘‘fitness.’’

The distribution of conformist clusters depends on the
probabilities q1; q2; q3; . . . which determine how the con-
formity probability varies with genetic distance. We will
study the case when q1 ¼ q40; q2 ¼ q3 ¼ � � � ¼ 0 (Hägg-
ström, 2001). That is, q is the probability that a pair
of nearest neighbors is a conformist pair. Thus, we
can talk about conformist edges or equivalently conformist

mutations, and q is the probability that a mutation is
conformist. (Note however that it is possible that
nearest neighbors x and y are in the same conformist
cluster even if the edge between them is non-conformist.)
Fig. 1 illustrates our 2-step procedure in a four-dimen-
sional example.

We expect that a more general model with qk declining
fast enough with k is just a smeared version of this basic
one, and its properties are not likely to differ from those of
the simpler model. We conjecture that for our purposes,
‘‘fast enough’’ decrease should be exponential with a rate
logarithmically increasing in the dimension n, e.g. for large
k, qkp expð�aðlog nÞkÞ, for some a41. (This is expected to
be so because in this case the expected number of neighbors
of the focal genotype is finite.)

We observe that the first step of our procedure is an
edge version of the percolation model discussed in the
second section, with a similar giant component transition
(Bollobás et al., 1992). Namely, let q ¼ m=n. Then, if m41,
there is a.a.s.one giant conformist cluster of size c � 2n, with
all others of size at most Cn. In contrast, if mo1 all
conformist clusters are of size at most Cn. Note that the
number of conformist clusters is always on the order 2n. In
fact, even the number of ‘‘non-conformist’’ (i.e., isolated)
clusters is a.a.s.asymptotic to e�m2n, as the probability
Pðx is isolatedÞ ¼ ð1� m=nÞn.
Denote by x)y (resp.x y) the event that x and y are

(resp.are not) in the same conformist cluster. First, we
note that the probability Pðx)yÞ that two genotypes
belong to the same conformist cluster depends on the
Hamming distance dðx; yÞ between them, and on q ¼ m=n.
In particular, we show in Appendix A that, if mo1 and
dðx; yÞ ¼ k is fixed, then

k!qkð1�Oðn�2ÞÞpPðx)yÞpk!qkð1þOðn�1 log nÞÞ. (5)

The dominant contribution k!qk is simply the expected
number of conformist pathways between x and y that are
of shortest possible length.
It is also important to note that, for every x 2 G, the

probability Pðx is viableÞ ¼ p, therefore it does not depend
on q. Moreover, for x; y 2 G,

Pðx and y viableÞ � p2

¼ Pðx and y viable; x)yÞ

þ Pðx and y viable; x yÞ � p2

¼ pPðx)yÞ þ p2 � Pðx yÞ � p2

¼ pð1� pÞPðx)yÞX0.
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Therefore, the correlation function (1) of fitness is

rðx; yÞ � Pðx)yÞ, (6)

which clearly increases with q and, thus, with m. The
correlation function rðx; yÞ decreases exponentially with
distance dðx; yÞ when mo1, and is bounded below when
m41. Nevertheless, as we will see below, we can effectively
use local methods for all values of m. Therefore, in this
model the probability of being viable is controlled by
parameter l while the correlation structure of the land-
scape is controlled by parameter m.

Proceeding by local branching process heuristics analo-
gous to those used in Section 2, we reason that a surviving
node on the branching tree can have two types of
descendants: those that are connected by conformist
mutations and those that are in different conformist
clusters and viable independently. Therefore the number
of descendants in the branching process is approximately
Poisson(mþ l).

The above argument can only work when mo1, as
otherwise the correlations are global. If m41, we need to
eliminate the entire conformist giant component, which is
a.a.s. inviable (because p is small). Locally, we condition
on the (supercritical) branching process of the supposed
descendant to die out. Such conditioned process is a
subcritical branching process, with Poisson ðmdÞ distribu-
tion of successors (Athreya and Ney, 1971) where
d ¼ dðmÞo1 is given by the equation d ¼ expðmðd� 1ÞÞ,
analogous to Eq. (2). This gives the conformist contribu-
tion, to which we add the independent PoissonðldÞ
contribution.

To have a convenient summary of the conclusions above,
assume that m is fixed and let zðmÞ be the smallest l which
a.a.s. ensures the giant component, i.e.,

zðmÞ ¼ inffl : a cluster of at least cn�12n

viable genotypes exists a:a:s: for some c40g.

One would expect that for lozðmÞ all components are
a.a.s. of size at most Cn. The asymptotic critical curve is
given by l ¼ zðmÞ, where

zðmÞ ¼
1� m if m 2 ½0; 1�;
1

d
� m if m 2 ½1;1Þ:

8<
: (7)

The asymptotic critical curve zðmÞ reaches the smallest
value of 0 at m ¼ 1. To intuitively understand why
percolation occurs the easiest with m � 1 (that is, when
the probability of a conformist mutation is � 1=n), it helps
to think of the model as a branching process on clusters
rather than on genotypes. Suppose we fix a particular set of
k genotypes as a viable conformist cluster. The number of
genotypes neighboring this cluster is then fixed, but the
number of neighboring conformist clusters is random. For
any mo1, it follows from Eq. (5) that the expected number
of neighboring clusters is asymptotically the same as
the number of neighboring genotypes. Consequently, we
expect the overall number of descendants in the branching
process to be greater if the size of the neighboring clusters
is greater on average; which is exactly what happens as m
increases towards 1. If m41, then there is a positive
proportion of the neighboring genotypes that are in the
giant cluster. This giant cluster is likely to be inviable, so
the parameter l must be greater to compensate for its loss.
In fact, one can prove rigorously (Pitman, unpub.) that

1� m is a lower bound on the critical surface by
comparison with an edge percolation model in which each
edge is retained independently with probability pþ q� pq.
We also remark that the number of viable clusters is on the
same order as the number of all viable genotypes, that is,
2n=n. Since p ¼ l=n, it follows that the number of viable
genotypes is on the order of 2n=n.
We have not been able to find an analytic proof that zðmÞ

(7) is also an upper bound, i.e., that the actual critical
surface is given by z. Thus, we resort to computer
simulations for confirmation. For this, we indicate global
connectivity with the event A that a genotype within
distance d ¼ 2 of 0 . . . 0 is connected (through viable
genotypes) to a genotype within distance d ¼ 2 of 1 . . . 1.
We make this choice because the distance 2 is the smallest
that works with asymptotic certainty. Indeed, the geno-
types 0 . . . 0 and 1 . . . 1 are likely to be inviable. Even the
number of viable genotypes within distance one of each of
these is only of constant order. It follows that, for any
m40, the probability of connectivity between a viable
genotype within distance one of 0 . . . 0 and a viable one
within distance one of 1 . . . 1 does not converge to 1 but is
of a nontrivial constant order. By contrast, there are about
n2 vertices within distance 2 of 0 . . . 0 among which of order
n are viable.
When l4zðmÞ the probability of the event A should

therefore be (exponentially) close to 1. On the other hand,
when lozðmÞ the probability that a connected component
within distance 2 of either 0 . . . 0 or 1 . . . 1 extends for
distance of the order n is exponentially small. We further
define the critical curves

lm ¼ the smallest l forwhichPðAÞ40:1,

lM ¼ the largest l forwhichPðAÞo0:9.

We approximated lm and lM for n ¼ 10; . . . ; 20 and
m ¼ 0ð0:1Þ2, with 1000 independent realizations of each
choice of n, m, and l. We used the linear cluster algorithm
described in Sedgewick (1997). Unfortunately, simulations
above n � 20 are not feasible. The results are depicted in
Fig. 2.
We make the following observations relating to Fig. 2:
�
 Even for low n, both critical curves approximate well the
overall shape of the theoretical limit curve z.

�
 The two curves lm and lM appear to be approaching a

limiting curve away from the theoretical limiting curve z.
However, this need not be interpreted as evidence
against z being the actual limiting curve. Indeed, this
behavior is an instance of a sharp threshold (Friedgut,
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1999): if one fixes a m, and increases l from 0 to 1,
then the global connectivity probability PðAÞ rises
from 0:1 to 0:9 within a very short interval (of length
lM � lm) even for a relatively low n. The location of this
sharp increase gets close to z much later; in symbols,
lM � lm5jz� lmj for large n.

�
 For mo1, lm tends to be above the limit curve. This is

not surprising because the local argument always gives
an upper bound on the probability PðAÞ of event A.

�
 The approximation of lm appears to deteriorate near

m ¼ 2, which stems from the increased probability of
survival of the giant component for larger m.

Summarizing, we have shown that this more realistic
model with phenotypic neutrality and fitness correlation
shares the most important property of simpler models
considered above—the existence of a percolating giant
cluster of viable genotypes extending throughout the
genotype space. More specifically, the number of clusters
of viable genotypes is on the order of 2n=n for any l and m,
and percolation occurs for l larger than zðmÞ given by
Eqs. (7). In terms of the viability probability p, the
percolation threshold is thus inversely proportional to the
dimensionality n of the genotype space (because p ¼ l=n).
Conformist mutations are most advantageous at about
m ¼ 1, which is the point of phase transition between local
and global conformist connectivity. In particular, for m�1,
percolation could potentially occur for p on a scale smaller
than 1=n. What is also clear from the heuristics and
simulations is that conformist clustering, and thus correla-
tions, can help or hinder connectivity in fitness landscapes.
Indeed, the critical probability for global connectivity in
the uncorrelated landscape is about l ¼ 1 (Section 2). In
the correlated landscape model considered here, the critical
value zo1 approximately for mo1:5 (Fig. 2). However, for
large values of m, correlations hinder connectivity.
In the model studied above, the viability probability p

was independent of the size of the conformist clusters. In
Appendix B, we consider a simple generalization that can
be tuned to create positive or negative correlations between
conformist cluster size and viability.

5. Percolation in incompatibility models

In the model considered in the previous section correla-
tions rapidly decreased with distance. This property made
local analysis possible. The models we introduce now are
fundamentally different in the sense that correlations are so
high that the local method gives a wrong answer.
In the previous sections, in constructing fitness land-

scapes we were assigning fitness to individual genotypes or
phenotypes. Here, we make certain assumptions about
‘‘fitness’’ of particular combinations of alleles or the values
of continuously varying phenotypic characters. Specifi-
cally, we will assume that some of these combinations are
‘‘incompatible’’ in the sense that the resulting genotypes or
phenotypes under given environmental conditions have
reduced (or zero) fitness (Orr (1995); Orr and Orr (1996);
Gavrilets (2004)). The resulting models can be viewed
as a generalization of the Bateson–Dobzhansky–Muller
model (Cabot et al., 1994; Orr, 1995; Orr and Orr, 1996;
Orr, 1997; Orr and Turelli, 2001; Gavrilets and Hastings,
1996; Gavrilets, 1997; Gavrilets and Gravner, 1997;
Gavrilets, 2003, 2004; Coyne and Orr, 2004) which
represents a canonical model of speciation.

5.1. Diallelic loci

We begin by considering n diallelic loci and assuming
that each pair of alleles is independently incompatible with
probability

p ¼
c

2n
.

We let a single pair of incompatible alleles make an
individual inviable. Thus, the variable p characterizes the
probability of being inviable rather than viable as in the
previous sections.
There are 4 � n

2

� �
allele pairs in all, and we form a random

list F of those that are incompatible. We denote the allele
pair u at locus i and v at locus j by ðui; vjÞ. In this
nonstandard notation, ð01; 02Þ 2 F , for example, means
that allele 0 at locus 1 and allele 0 at locus 2 are
incompatible. In general, if ðui; vjÞ 2 F , all genotypes with
u in position i and v in position j are inviable. A genotype x

is then inviable if and only if there exist i and j, with ioj, so
that u and v are, respectively, the alleles of x at loci i and j,
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and ðui; vjÞ 2 F . For example, if F1 ¼ fð01; 02Þ; ð12; 03Þ;
ð11; 12Þg, viable genotypes may have 011, 100, and 101 as
their first three alleles. For F2 ¼ F1 [ fð01; 13Þ; ð11; 02Þg, no
viable genotype remains.

Incompatibility ð01; 02Þ is equivalent to two implications:
01 ) 12 and 02 ) 11 or to the single OR statement 11 OR 12.
In this interpretation, the problem of whether, for a given
list of incompatibilities F, there is a viable genotype is
known as the 2-SAT problem (Korte and Vygen, 2005).
The associated digraph DF is a graph on 2n vertices xi,
i ¼ 1; . . . n, x ¼ 0; 1, with oriented edges determined by the
implications. A well-known theorem (Korte and Vygen,
2005) states that a viable genotype exists iff DF contains no
oriented cycle from 0i to 1i and back to 0i for any i ¼

1; . . . n in DF . For example, for the incompatibilities F2 as
above, one such cycle is 01! 12! 13! 11! 12! 01.

5.1.1. Existence of viable genotypes

In this model, viable genotypes exist only if the
probability of pairwise incompatibility p is smaller than
1=ð2nÞ. More precisely, let N be the number of viable
genotypes. Then
�
 if c41, then a.a.s. N ¼ 0.

�
 if co1, then a.a.s. N40.
This result first appeared in the computer science literature
in the 1990s (see de la Vega (2001) for a review), and it is an
extension of the celebrated Erdös-Rényi random graph
results (Bollobás, 2001; Janson et al., 2000) to the oriented
case.

Note that the expectation EðNÞ ¼ 2nð1� pÞ
n
2ð Þ � 2ne�cn=4,

which grows exponentially whenever co4 log 2 � 2:77.
Neglecting correlations would therefore suggest a wrong
threshold for the existence of viable genotypes. The local
method based on analysis of the averages (e.g., used in
Gavrilets, 2004, Chapter 6) is even farther off, as it suggests
an a.a.s. giant component when poð1� �Þ log n=n for
any �40.

5.1.2. The number of viable genotypes

Assume that co1. Sophisticated, but not mathematically
rigorous methods based on replica symmetry (Monasson
and Zecchina, 1997; Biroli et al., 2000) from statistical
physics suggest that, as n!1, lim n�1 log N varies
almost linearly between log 2 � 0:69 (for small c, when,
as we prove below, this limit is log 2þ OðcÞ) and about 0:38
(for c close to 1). One can however prove that n�1 log N is
for large n sharply concentrated around its mean (de la
Vega, 2001).

Upper and lower bounds on N can also be obtained
rigorously. For example, if X is a number of incompat-
ibilities which involve disjoint pairs of loci (i.e., those for
which every locus is represented at most once among
the incompatibilities), then Np expðn log 2þ X logð3

4
ÞÞ, as

each of the X incompatibilities reduces the number of
viable genotypes by the factor 3

4
. If we imagine adding
incompatibilities one by one at random until there are
about cn of them, then after we have k incompatibilities
on disjoint pairs of loci the waiting time (measured by
the number of incompatibilities added) for a new disjoint
one is geometric with expectation n

2

� �
= n�2k

2

� �
. Therefore, X

is a.a.s. at least Kn, where K solves the approximate
equation

n

2

� � XKn

k¼0

1

n� 2k

2

� �
0
BBB@

1
CCCA�cn,

orZ Kn

0

1

ðn� 2kÞ2
dk�

c

n
,

which reduces to K ¼ c=ð1þ 2cÞ. This implies that in the
limit of large n the upper bound on N can be written as

1

n
log Np

1

1þ 2c
log 2þ

c

1þ 2c
log 3. (8)

A lower bound is even easier to obtain. Namely, the
probability that a fixed location (i.e., locus) i does not
appear in F is ð1� pÞ4ðn�1Þ ! e�2c, and then it is easy to see
that the number of loci represented in F is asymptotically
ð1� e�2cÞn. As the other loci are neutral (in the sense that
changing their alleles does not affect fitness), n�1 log N is
asymptotically at least e�2c log 2. Clearly, this gives a lower
bound on the exponential size of any cluster of viable
genotypes.
If this was an accurate bound, it would imply that

the space of genotypes is rather simple, in that almost
all its entropy would come from neutral loci. (By analogy
with physical systems, entropy is a measure of the
amount of choice (‘‘number of degrees of freedom’’) one
has in selecting a viable genotype.) Appendix C presents
two arguments which will demonstrate that this is not
the case.

5.1.3. The structure of clusters

The derivations in Appendix C show that every viable
genotype is connected through mutation to a fairly
substantial viable sub-cube. In this sub-cube, alleles on at
most a proportion ruðcÞo1 of loci are fixed (to 0 or 1) while
the remaining proportion 1� ruðcÞ could be varied without
effect on fitness. Note from Fig. 4 in Appendix C that
1� ruðcÞX0:3 for all c, and that such a phenomenon is
extremely unlikely on uncorrelated landscapes. Namely, in
the setting of Section 2, the probability that a viable
subcube of size k exists anywhere is at most

n

k

� �
� p2k

p expðk log nþ 2k log pÞ,

so even at the connectivity threshold p ¼ 1
2
the size of

largest viable subcube is a.a.s.of order log log n. Note also
that, for co1, NX2ð1�ruðcÞÞn a.a.s. and so in the limit of
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large n the lower bound on N can be written as

1

n
log NXð1� ruðcÞÞ log 2. (9)

5.1.4. The number of clusters

The natural next question concerns the number of
clusters R when co1. This again has quite a surprising
answer, unparalleled in landscapes with rapidly decaying
correlations. Namely, R is stochastically bounded, that is,
for every �40 there exists an z ¼ zð�Þ such that PðRpz for
all nÞ41� �. This follows from a result in Pitman (unpub.),
which shows that the distribution of R converges in
distribution to 2X , where X is distributed Poisson(l) for

l ¼ �1
2
ðlogð1� cÞ þ cÞ.

The probability that there is a unique cluster thus
converges to e�l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cÞec

p
.

Asymptotically, a unique cluster has a better than even
chance of occurring for c below about 0:9, and is very likely
to occur for small c, though of course not a.a.s. so.
To confirm, we have done simulations for n ¼ 20 and c ¼

0:01ð0:01Þ1 (again 1000 trials in each case) and got
distribution of clusters depicted in Fig. 3. The results
suggest that the convergence to limiting distribution is
rather slow for c close to 1, and that the likelihood of a
unique cluster increases for low n.

To summarize, in the presence of random pairwise
incompatibilities, the set of viable genotypes is, when
nonempty, divided into a stochastically bounded number
of connected clusters, where a unique cluster is usually the
most likely possibility. These clusters are all of exponentially
large size (with bounds given by Eqs. (8) and (9)), in fact they
all contain sub-cubes of dimension at least ð1� ruðcÞÞn.
However, the proportion of viable genotypes among all 2n

genotypes is exponentially small, by equation (8).
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In fitness landscapes based on incompatibilities, high
correlations make a significant proportion of genetic
information irrelevant in the sense that genotypes can be
changed by mutations at many loci without affecting
fitness. This might be expected from the perspective that
the model of lethal allele pairs (i.e., pairwise incompat-
ibilities) is a natural generalization of the much simpler
model of lethal alleles in which each of 2n alleles is
independently lethal with probability p. In this model, the
proper scale is p ¼ c=

ffiffiffi
n
p

. A viable genotype exists when
there is no locus at which both alleles are lethal, which
happens with probability ð1� p2Þ

n
�e�c2 . (Note that there

is not a sharp threshold in this mode, i.e., taking the
existence probability from 1 to 0 requires varying c from 0
to 1.) Moreover, all the loci for which neither allele is
lethal can be changed by mutation without affecting fitness.
The number of such loci is about ð1� pÞ2nXn� 2c

ffiffiffi
n
p

, so
nearly all loci are neutral. It is also interesting to point out
that the uncorrelated model, where viability of genotypes is
independently determined is at the other extreme—viability
of genotypes is based on lethal combinations of all n alleles.
In the following sections, we study the conditions for the

existence of viable genotypes in several related models
starting with complex incompatibilities.

5.2. Complex incompatibilities

Here we assume that incompatibilities involve K ðX2Þ
diallelic loci (Cabot et al., 1994; Orr and Orr, 1996;
Gavrilets, 2004). Determining whether a viable combina-
tion of genes exists is then equivalent to the K-SAT problem
(Korte and Vygen, 2005). Even for K ¼ 3, this is an NP-
complete problem (Korte and Vygen, 2005), so there is no
known polynomial algorithm to answer this question. The
random case, which we now describe, is also much harder
to analyze than the 2-SAT one. Let F be a random set to
which any of the 2K n

K

� �
incompatibilities belong indepen-

dently with probability

p ¼
K !

2K
�

c

nK�1
.

Here c ¼ cðKÞ is a constant, and the above form has been
chosen to make the number of incompatibilities in F

asymptotically cn (Note also the agreement with the
definition of p in Section 5.1 when K ¼ 2.). For a fixed
K, it has been proved (Friedgut, 1999) that the probability
that viable genotype exists jumps sharply from 0 to 1 as c

varies. However, the location of the jump has not been
proved to converge as n!1. Instead, a lot of effort has
been invested in obtaining good bounds. For example
(Achlioptas and Peres, 2004), for K ¼ 3, co3:42 implies
a.a.s. existence of viable genotype, while c44:51 implies
a.a.s. nonexistence (while the sharp constant is estimated to
be about 4:48, see e.g. Biroli et al., 2000). For K ¼ 4 the
best current bounds are 7:91 and 10:23. For large K, the
transition occurs at c ¼ 2K log 2� OðKÞ (Achlioptas and
Peres, 2004).
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Techniques from statistical physics (Biroli et al., 2000)
strongly suggest that, for KX3, there is another phase
transition, which for K ¼ 3 occurs at about c ¼ 3:96. For
smaller c, the viable genotypes are conjectured to be
contained in a single cluster. For larger c, the space of
viable genotypes (if nonempty) is divided into exponen-
tially many connected clusters. It appears that 3-SAT is
already noticeably closer than 2-SAT to the uncorrelated
model in Section 2 where the number of clusters is on the
order of the number of viable genotypes and to the weakly
correlated model of Section 4.

Perhaps more relevant to genetic incompatibilities is the
following mixed model (commonly known as ð2þ pÞ-SAT,
Monasson and Zecchina, 1997). Assume that every
2-incompatibility is present with probability c2=ð2nÞ,
while every 3-incompatibility is present with probability
3c3=ð4n2Þ. The normalizations are chosen so that the
numbers of 2-incompatibilites and 3-incompatibilities are
asymptotically c2n and c3n, respectively.

If c2 (resp. c3) is very small, then the respective
incompatibility set affects a very small proportion of
loci, therefore c3 (resp. c2) determines whether a viable
genotype is likely to exist. Intuitively, one also expects
that 2-incompatibilities should be more important than
3-incompatibilities as one of the former type excludes more
genotypes than one of the latter type. A careful analysis
confirms this. First observe that c241 implies a.a.s. non-
existence of a viable genotype. The surprise (Monasson and
Zecchina, 1997; Achlioptas et al., 2001) is that if c3 is small
enough, c2o1 implies a.a.s. existence of viable genotypes,
so the 3-incompatibilities do not change the threshold. This
is established in Monasson and Zecchina (1997) by a
physics argument for c3o0:703, while Achlioptas et al.
(2001) gives a rigorous argument for c3o2

3
. Therefore, even

if their numbers are on the same scale, if the more complex
incompatibilities are rare enough compared to the pairwise
ones, their contribution to the structure of the space of
viable genotypes is not essential.
5.3. Multiallelic loci

Here we assume that at each locus there can be a ðX2Þ
alleles (cf., Reidys, 2006). In this case, the genotype space is
the generalized hypercube Ga ¼ f0; . . . ; a� 1gn. For a ¼ 3
this could be interpreted as the genotype space of diploid
organisms without cis-trans effects (Gavrilets and Gravner,
1997), a ¼ 4 corresponds to DNA sequences, and a ¼ 20
corresponds to proteins. Much larger values of a can
correspond to a number of alleles at a protein coding locus
and we will see later that there is not much difference
between this model and a natural continuous space model.

We will assume that each pair of alleles, out of total
number of a2 n

2

� �
is independently incompatible with

probability

p ¼
c

2n
.

The main question we are interested in here is for which
values of c viable genotypes exist a.a.s.
Clearly, if N is the number of viable genotypes, then the

expectation

EðNÞ ¼ anð1� pÞ
n
2ð Þ � expðn log a� 1

4cnÞ

and so there are a.a.s. no viable genotypes when
c44 log a. On the other hand, clearly there are viable
genotypes (with all positions filled by 0’s and 1’s) when
co1. It turns out that the first of these trivial bounds is
much closer to the critical value when a is large. Before we
proceed, however, we state a sharp threshold result from
Molloy (2003): there exists a function g ¼ gðn; aÞ so that for
every �40,
�
 if c4gþ �, then a.a.s. N ¼ 0.

�
 if cog� �, then a.a.s. N40.
In words, for a fixed a, the probability of the event that
NX1 transitions sharply from large to small as c increases
through g. As it is not proved that limn!1gðn; aÞ exists, it is
in principle possible that the place of this sharp transition
fluctuates as n increases (although it must of course remain
within ½1; 4 log a�).
Our main result in this section is

g ¼ 4 log a� oð1Þ as a!1. (10)

This somewhat surprising result is proven in Appendix D
by the second moment method, as developed in Achlioptas
and Moore (2004) and Achlioptas and Peres (2004).
Eq. (10) implies that viable genotypes exist only if the

incompatibility probability

po
2 log a

n
, (11)

which decreases linearly with the number of the loci n but
increases only logarithmically with the number of alleles a.
That is, multiple alleles widen the conditions for the
existence of viable genotypes but the effect is not too
strong.
5.4. Continuous phenotype spaces

Here we extend the model of pair incompatibilities for
the case of continuous phenotypic space P ¼ ½0; 1�n. Again,
each phenotype is characterized by values z1; . . . ; zn, each
between 0 and 1, which specify n continuous traits. This
time we also have a small r40 as a parameter. For each
pair of traits ði; jÞ, ioj, we independently choose a
Poisson(l) number of points Pij uniformly at random in
the unit square ½0; 1� � ½0; 1�. These points will be inter-
preted as ‘‘gorges’’ of equal deapth in the fitness land-
scapes. As in the discrete case, we assume that l ¼ c=ð2nÞ.
Then we declare each phenotype z ¼ ðz1; . . . ; znÞ 2 P
inviable if it has two traits ioj so that ðzi; zjÞ is within r

of the ‘‘gorge’’ Pij . Our procedure can be visualized as
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throwing a random number of ðn� 2Þ-dimensional square
tubes of inviable phenotypes into the phenotype space.

Our main result here is that the existence threshold is on
the order c � � log r=r2. Namely, we prove in Appendix E
that there exists a constant C40 so that for small enough r,
�
 if c44� log r=r2, then a.a.s. N ¼ 0.

�
 if co� log r� C=r2, then a.a.s. N40.
In the basic and continuous models in Sections 2 and 3,
the difference in percolation thresholds (given by Eqs. (3)
and (4)) was dramatic. In contrast, the continuous and
discrete cases here are a lot closer. The scaling of the
critical probability is 1=n for both cases, and as explained
in Appendix E, the continuous case described here is
related to the discrete one (from Section 5.3) with a � 1=r

and the incompatibility probability p � r2=n.
Overall, the results presented in Section 5 show that the

structure of fitness landscapes in incompatibility models
are very different from that in models considered in earlier
sections. Although both types of models result in large
clusters of viable genotypes, the former allow for more
neutral changes on local scales (because incompatibilities
are rare) but for less extensive genetic divergence on larger
scales (because viable clusters are represented by subcubes
rather than trees) than the latter.

6. Notes on neutral clusters in the discrete NK model

The model considered here is a special case of the
discretized NK model (Kauffman, 1993), introduced in
Newman and Engelhardt (1998a). This model features n

diallelic loci each of which interacts with K other loci.
To have a concrete example, assume that the loci are
arranged on a circle, so that nþ 1 	 1, nþ 1 	 2, etc.,
and let the interaction neighborhood of the ith locus
consist of itself and K loci to its right i þ 1; . . . ; i þ K .
For a given genotype x 2 G ¼ f0; 1gn, the neighborhood
configuration of the i’th locus is then given by NiðxÞ ¼

ðxi;xiþ1; . . . ;xiþK Þ 2 f0; 1g
Kþ1. To each locus and to each

possible configuration in its neighborhood we indepen-
dently assign a binary fitness contribution. To be more
precise, we choose the 2Kþ1n numbers viðyÞ, i ¼ 1; . . . ; n and
y 2 f0; 1gKþ1, to be independently 0 or 1 with equal
probability, and interpret viðyÞ as the fitness contribution
of locus i when its neighborhood configuration is y. The
fitness of a genotype x is then the sum of contributions
from each locus

wðxÞ ¼
Xn

i¼1

viðNiðxÞÞ.

In Kauffman (1993), the values vi were taken from a
continuous distribution. In Newman and Engelhardt
(1998a), these values were integers in the range ½0;F � 1�
so that our model is a special case F ¼ 2. The NK model
results in a correlated fitness landscape; the corresponding
correlation function (1) can be found explicitly (Fontana
et al., 1993; Campos et al., 2002; Gavrilets, 2004).
We define neutral clusters as connected components of

same fitness. The K ¼ 0 case, which corresponds to an
additive fitness model, is easy but nevertheless illustrative.
Namely, a mutation at locus i will not change fitness iff
við0Þ ¼ við1Þ; let D be the number of such loci. Since the
fitnesses contributions are assigned randomly and with
equal probabilities, each locus has a 50% chance to be in
this category. Then D�n=2 a.a.s., the number of different
fitnesses is n�D, each neutral cluster is a sub-cube of
dimension D, and there are exactly 2n�D neutral clusters.
The next simplest situation is when K ¼ 1, so that each

locus interacts with one other locus. Let D1 be the number
of loci i for which the fitness contribution vi is constant, i.e.,
does not depend on the configuration in the ith neighbor-
hood Ni. Then D1�n=8 a.a.s. (because out of the 24 ¼ 16
possible functions vi, two are constant, the 0 and the 1),
and each neutral cluster contains a sub-cube of dimension
D1. Moreover, let D2 be the number of loci i for which
við00Þ ¼ við01Þavið10Þ ¼ v1ð11Þ. Note that there are again
two functions with this property, and that any genotypes
that differ at such a locus i must belong to a different
neutral cluster. Consequently, the number of different
neutral clusters is at least 2D2 and there are exponentially
many of them, as again D2�n=8 a.a.s. This division
of genotype space into exponentially many clusters
of exponential size persists for every K, although the
distribution of numbers and sizes of these clusters is not
well understood (see Newman and Engelhardt, 1998a for
simulations for n ¼ 20).
Overall, neutral clusters are a prominent feature of the

NK model. We also mention that the question of whether a
genotype with the maximal possible fitness n exists for a
given K is in many way related to issues in incompatibilities
models (Choi et al., 2005).

7. Discussion

In this section we summarize our major findings and
provide their biological interpretation.
The previous work on neutral and nearly neutral

networks in multidimensional fitness landscapes has con-
centrated exclusively on genotype spaces in which each
individual (or a group of individuals) is characterized by a
discrete set of genes. However many features of biological
organisms that are actually observable and/or measurable
are described by continuously varying variables such
as size, weight, color, or concentration. A question of
particular biological interest is whether (nearly) neutral
networks are as prominent in a continuous phenotype
space as they are in the discrete genotype space. Our results
provide an affirmative answer to this question. Specifically,
we have shown that in a simple model of random fitness
assignment, viable phenotypes are likely to form a large
connected cluster even if their overall frequency is very low
provided the dimensionality of the phenotype space, n, is



ARTICLE IN PRESS
J. Gravner et al. / Journal of Theoretical Biology 248 (2007) 627–645638
sufficiently large. In fact, the percolation threshold for the
probability of being viable scales with n as 1=2n and, thus,
decreases much faster than 1=n which is characteristic of
the analogous discrete genotype space model.

Earlier work on nearly neutral networks has been limited
to consideration of the relationship between genotype and
fitness. Any phenotypic properties that usually mediate this
relationship in real biological organisms have been
neglected. In Section 4, we proposed a novel model in
which phenotype is introduced explicitly. In our model, the
relationships both between genotype and phenotype and
between phenotype and fitness are of many-to-one type, so
that neutrality is present at both the phenotype and fitness
levels. Moreover, this model results in a correlated fitness
landscape in which the correlation function can be found
explicitly. We showed that phenotypic neutrality and
correlation between fitnesses can reduce the percolation
threshold. Our results suggest that the most conducive
conditions for the formation of the giant component is
when the correlations are at the point of phase transition
between local and global. To explore the robustness of our
conclusions, we then look at a simplistic but mathemati-
cally illuminating model in which there is a correlation
between conformity (i.e., phenotypic neutrality) and
fitness. The model has supported our conclusions.

In Section 5, we studied a number of models that have
been recently proposed and explored within the context of
studying speciation. In these models, fitness is assigned to
particular gene/trait combinations and the fitness of the
whole organisms depends on the presence or absence of
incompatible combinations of genes or traits. In these
models, the correlations of fitnesses are so high that local
methods lead to wrong conclusions. First, we established
the connection between these models and SAT problems,
prominent in computer science. Then we analyzed the
conditions for the existence of viable genotypes, their
number, as well as the structure and the number of clusters
of viable genotypes. These questions have not been studied
previously. The majority of our results are for the case of
pairwise incompatibilities between diallelic loci, but we also
looked at multiple alleles and complex incompatibilities. In
the case of diallelic loci we showed that the number of
clusters is stochastically bounded and each cluster contains
a very large sub-cube. Our results suggest (in the context of
the mixed model) that more complex incompatibilities are
less important than less complex incompatibilities in
controlling the structure of the space of viable genotypes.
However, complex incompatibilities appear to allow
for exponentially many clusters of viable genotypes.
Finally, we generalized some of our findings to continuous
phenotype spaces.

In Section 6, we provided some additional results on
the size, number and structure of neutral clusters in the
discrete NK model which represent a popular tool for
studying adaptation (Kauffman and Levin, 1987; Kauff-
man, 1993; Newman and Engelhardt, 1998b; Welch and
Waxman, 2005).
In the majority of models studied here, we assumed for
simplicity that fitness can take only two values: zero and
one. In Section 2, we mentioned the relationship between
viable genotypes and fitness bands. This concept is
explored in some detail in our previous work (Gavrilets,
1997; Gavrilets and Gravner, 1997; Gavrilets, 2004) where
we showed that many results on viable genotypes in
uncorrelated landscapes easily generalize to the case of
continuously changing fitness. The same is true of the
models in Sections 3 and 4. For simplicity, our analysis has
been restricted to very symmetric models. However, we
expect that many conclusions of this paper can be
generalized to nonsymmetric fitness assignments provided
the dimensionality of fitness landscapes is very large.
Overall, our results reinforce the previous conclusion

(Gavrilets, 1997; Gavrilets and Gravner, 1997; Reidys et
al., 1997; Gavrilets, 2004; Reidys et al., 2001; Reidys and
Stadler, 2001, 2002) that percolating networks of genotypes
with approximately similar fitnesses (holey landscapes) is a
general feature of multidimensional fitness landscapes (both
uncorrelated and correlated and both in genotype and
phenotype spaces). The evolution along such networks can
readily proceed by mutation and random genetic drift
(Kimura, 1983; Ohta, 1992, 1998; Lynch, 2007) and result
in the accumulation of reproductive isolation between
diverging lineages and in allopatric, parapatric or sympa-
tric speciation (Cabot et al., 1994; Orr, 1995; Orr and Orr,
1996; Orr, 1997; Orr and Turelli, 2001; Gavrilets
and Hastings, 1996; Gavrilets, 1997; Gavrilets and
Gravner, 1997; Gavrilets, 2003, 2004; Coyne and Orr,
2004). Selection (e.g., for local adaptation or sexual) can
either help or hinder these processes depending on whether
its net effect is diversifying or stabilizing.
Some more general theoretical lessons of our work are

that
�
 Correlations may help or hinder connectivity in fitness
landscapes. Even when correlations are positive and
tunable by a single parameter, it may be advantageous
(for higher connectivity) to increase them only to a
limited extent. One reason (see Section 4.2) is that high
correlations may result in a loss of very large phenoty-
pically similar clusters.

�
 Averages (i.e., expected values) can easily lead to wrong
conclusions, especially when correlations are strong (see
Section 5.1). Nevertheless, they may still be useful with a
crafty choice of relevant statistics (see Achlioptas and
Peres, 2004 and Appendix D).

�
 Very high correlations may fundamentally change the
structure of connected clusters. For example, clusters
may look locally more like cubes (Section 5) than trees
(Sections 2–4) and their number may be reduced
dramatically (Section 5).

�
 Necessary analytic techniques may be unexpected and
quite sophisticated; for example, they may require
detailed understanding of random graphs, spin-glass
machinery, or decision algorithms.
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Appendix A. Proof of Eq. (5)

To prove Eq. (5), we assume that mo1 and show that for
a fixed k (which does not grow with n), the event that x and
y at distance k are in the same conformist cluster is most
likely to occur because x and y are connected via the
shortest possible path. Indeed, the dominant term k!qk is
the expected number of conformist pathways between x

and y that are of shortest possible length k. This easily
follows from the observation that on a shortest path there
is no opportunity to backtrack; each mutation must be
toward the other genotype. We can assume that x is the all
0’s genotype and y is the genotype with 1’s in the first k

positions and 0’s elsewhere. There are k! orders in which
the 1’s can be added.

To obtain the lower bound we use inclusion-exclusion on
the probability that x)y through a shortest path. Let
Ik ¼ Ikðx; yÞ be the set of all paths of length k between x

and y. Then

Pðx)yÞX
X
a2Ik

PðAaÞ �
X

aab2Ik

PðAa \ AbÞ

where Aa is the event that a particular path a consists
entirely of conformist edges. Notice that two distinct paths
of the same length differ by at least two edges. Thus, we get
the following upper boundX
a;b

PðAa \ AbÞoðk!Þ2qkþ2,

and the lower bound in Eq. (5) follows.
The upper bound is a little more difficult to obtain (it is

only here that we use mo1) and we need some notation.
Each genotype can be identified with the set of 1’s that it
contains, so for any two genotypes u and v we let u4 v

denote the set of loci on which they differ. Notice that if
u4 v is even (resp. odd) then every path between u and v is
of even (resp. odd) length because each mutation which
alters the allele at a locus not in u4 v must later be
compensated for.

To estimate the expected number of conformist path-
ways, we will need to bound the number of paths of length l

between x and y. This is given by

k!
l

m

� �
m!nm where m ¼

l � k

2
.

We show this via the methods of Bollobás et al. (1992).
They obtain an estimate for the number of cycles of a given
length through a fixed vertex of the cube.
Given a path, say x ¼ v0; v1; . . . ; vl ¼ y, between x and y,
let us associate the sequence ð�1i1; . . . ; �l ilÞ where

vj 4 vj�1 ¼ fijg and �j ¼
þ1 if vj ¼ vj�1 [ ij ;

�1 if vj ¼ vj�1nfijg;

(

where j ¼ 1; . . . ; l. Since distinct paths will have distinct
sequences we can bound the number of paths by finding an
upper bound for the number of sequences.
Note that there must be mþ k positive entries, which

occur at ð l
mþk
Þ ¼ ð l

m
Þ possible locations. The absolute values

of m of these entries are chosen freely from f1; . . . ; ng, while
the remaining k must be the integers 1; . . . ; k. There are
nmk! ways to do this. We are free to order the m negative
entries and the bound follows.
We now assume that dðx; yÞ is even and relabel

dðx; yÞ ¼ 2k. We omit the similar calculation for odd
distances. Define b ¼ �3k=ð2 log mÞ and t ¼ bb log nc. Then
the expected number of conformist paths between x and y

can be expressed asX
lXkþ1

X
I2l

q2l

¼
X

kþ1plot

X
I2l

q2l þ
X
lXt

X
I2l

q2l

o
X

kþ1plot

2l

l � k

 !
nl�kðl � kÞ!ð2kÞ!q2l þ

X
lXt

n2lq2l

¼
X

kþ1plot

ð2lÞl�knl�kq2ðl�kÞð2kÞ!q2k þ
X
lXt

m2l

oð2kÞ!q2k
X

lXkþ1

ð2bmq log nÞl�k
þOðm2b log nÞ

¼ kð2kÞ!q2kOðq log nÞ þOðn2b log mÞ

¼ kð2kÞ!q2kOðn�1 log nÞ.

Appendix B. Correlations between conformity and viability

Assume now that conformist clusters are formed as in
Section 4 (i.e., with edges being conformist with probability
q ¼ m=n), are still independently viable, but now the
probability of their viability depends on their size. We will
consider the simple case when an isolated genotype (one
might call it non-conformist) is viable with probability
p0 ¼ l0=n, while a conformist cluster of size larger than 1 is
viable with probability p1 ¼ l1=n.
In this case, the probability that a random genotype is

viable,

Pðx is viableÞ ¼ ð1� qÞnp0 þ ð1� ð1� qÞnÞp1

�
1

n
ðe�ml0 þ ð1� e�mÞl1Þ.

Moreover, by a similar calculation as before,

Pðx and y viableÞ � Pðx viableÞ2

¼ p1ð1� p1ÞPðx)yÞ

þ Pðx non-conformistÞ2qðp0 � p1Þ
2
� 1fdðx;yÞ¼1g.
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Here, the last factor is the indicator of the set fðx; yÞ;
dðx; yÞ ¼ 1g, which equals 1 if dðx; yÞ ¼ 1 and 0 otherwise.
Therefore, for dðx; yÞX2, the correlation function (1) is

rðx; yÞ�
l1

e�ml0 þ ð1� e�mÞl1
Pðx)yÞ,

which is smaller than before iff l1ol0. However, it has the
same asymptotic properties unless l1 ¼ 0.

Assume first that mo1. The local analysis now leads to a
multi-type branching process (Athreya and Ney, 1971) with
three types: NC (non-conformist node), CI (non-isolated
node independently viable, so no conformist edge is
accounted for), and CC (non-isolated node viable by
conformity, so a conformist edge is accounted for). Note
that while the type NC is a new feature, the difference
between CI and CC was the key to our earlier local analysis
in Section 4.1—a neighbor of a viable genotype may be
viable because of a conformist edge between them or
because it belongs to an independently viable conformist
cluster.

Note first that a genotype is non-conformist with
probability about e�m. Hence a node of any of the three
types creates a Poisson (e�ml1) number of type NC
descendants, and a Poisson (ð1� e�mÞl1) number of type
CI descendants. In addition, the type CI creates a
Poisson(m), conditioned on being nonzero, number of
descendants of type CC and type CC creates a Poisson(m)
number of descendants of type CC. Thus the matrix of
expectations, in which the ijth entry is the expectation of
the number of type j descendants from type i, is

M ¼

e�ml0 ð1� e�mÞl1 0

e�ml0 ð1� e�mÞl1 m=ð1� e�mÞ

e�ml0 ð1� e�mÞl1 m

2
64

3
75.

When m41, m needs to be replaced by md, and l1 by l1d,
where d ¼ dðmÞ is given by Eq. (2).

It follows from the theory of multi-type branching
processes (Athreya and Ney, 1971) that the critical surface
for survival of a multi-type branching process is given by
detðM � 1Þ ¼ 0.

The simplest case is when only non-conformist geno-
types may be viable, i.e., l1 ¼ 0. In this case the critical
surface is given by l0e�m ¼ 1 (Pitman, unpub.). Not
surprisingly, the critical l0 necessary to achieve global
connectivity strictly increases with m, which is the result of
negative correlations between conformity and viability.

The other extreme is when non-conformist genotypes are
inviable, i.e., l0 ¼ 0. As an easy computation demon-
strates, the critical curve is now given by l1 ¼ zðmÞ, where

zðmÞ ¼

1� m
me�m þ 1� e�m

if m 2 ½0; 1�;

r�1 � m
me�m þ 1� e�mr

if m 2 ½1;1Þ:

8>>><
>>>:

(12)

Note that zðmÞ ! 1 as m! 0. We carried out exactly
the same simulations as before. These are also featured in
Fig. 4, and again confirm our local heuristics. We conclude
that positive correlations between viability and conformity
tend to lead to a V-shaped critical curve, whose sharpness
at critical conformity m ¼ 1 increases with the size of
correlations. In short, then, correlations help more if
viability probability increases with size of conformist
clusters (Fig. 5).
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Appendix C. Cluster structure under random pair

incompatibilities

Here we show that, under random pairwise incompat-
ibilities model introduced in Section 5.1, connected
clusters include large subcubes. The basic idea comes from
Boufkhad and Dubois (1999). A configuration a 2 f0; 1; 
gn

is a way to specify a sub-cube of G, if 
’s are thought of as
places which could be filled by either a 0 or a 1. The
number of non-
’s is the length of a. Call a an implicant if
the entire sub-cube specified by a is viable.

We present two arguments, beginning with the one which
works better for small c. Let the auxiliary random variable X

be the number of pairs of loci ði; jÞ, ioj, for which:
(E1)
 There is exactly one incompatibility involving alleles
on i and j.
(E2)
 There is no incompatibility involving an allele on
either i or j, and an allele on kefi; jg.
Assume, without loss of generality, that the incompatibility
which satisfies (E1) is ð1i; 1jÞ. Then fitness of all genotypes
which have any of the allele assignments 0i0j, 0i1j and 1i0j,
and agree on other loci, is the same. Note also that all pairs
of loci which satisfy (E1) and (E2) must be disjoint.
Therefore, if x is any viable genotype, its cluster contains
an implicant with the number of 
’s at least X plus the
number of free loci. To determine the size of X, note that
the expectation

EðX Þ ¼
n

2

� �
4pð1� pÞ3ð1� pÞ8ðn�2Þ�ce�4cn

and furthermore, by an equally easy computation,

EðX 2Þ � EðX Þ2 ¼ OðnÞ,

so that X�ce�4cn a.a.s. It follows that every cluster
contains a.a.s. at least expðððe�2c þ ce�4cÞ log 2� �ÞnÞ,
viable genotypes, for any �40.

The second argument is a refinement of the one in
Boufkhad and Dubois (1999) and only works better for
larger c. Call an implicant a a prime implicant (PI) if at any
locus i, replacement of either 0i or 1i by 
i results in a non-
implicant. Moreover, we call a the least prime implicant

(LPI) if it is a PI, and the following two conditions are
satisfied. First, if all the 
’s are changed to 0’s, then no
change from 1i to 0i results in a viable genotype. Second,
no change 
i1j to 1i 
 j, where ioj, results in an indicator.

Now, every viable genotype must have an LPI in its cluster.
To see this, assume we have a PI for which the first condition
is not satisfied. Make the indicated change, then replace some
0’s and 1’s by 
’s until you get a prime indicator. If the second
condition is violated, make the resulting switch, then again
make some replacement by 
’s until you arrive at a PI. Either
of these two operations moves within the same cluster, and
keeps the number of 1’s nonincreasing and their positions
more to the left. Therefore, the procedure must at some point
end, resulting in an LPI in the same cluster.
For a sub-cube a to be an LPI, the following conditions
need to be satisfied:
(I1)
 Every non-
 has to be compatible with every other
non-
, and with both 0 and 1 on each of the 
’s.
(I2)
 Any of the four 0,1 combinations on any pair of 
’s
must be compatible.
(LPI1)
 Pick an i with allele 1, that is, a 1i. Then 0i must be
incompatible with at least one non-
, or at least one
0 on a 
. Furthermore, if 0i has an incompatibility
with a 0 on a 
 to its left, it has to have another
incompatibility, either with a non-
, or with a 0 or a
1 on a 
.
(LPI2)
 Pick a 0i. Then 1i must be incompatible with a non-

, or a 0 or a 1 on a 
.
The first two conditions make a an implicant, and the last
two an LPI. Note also that these conditions are independent.
Let now X be the number of LPI of length rn. We will

identify a function L4 ¼ L4ðr; cÞ such that

1

n
log EðX ÞpL4.

Let

L1 ¼ L1ðb; p; zÞ ¼ zðb log pþ ð1� bÞ logð1� pÞ

� b log b� ð1� bÞ logð1� bÞÞ.

This is the exponential rate for the probability that in zn

Bernoulli trials with success probability p there are exactly
bn successes, i.e., this probability is � expðL1nÞ. Further, if
k; �; d 2 ð0; 1Þ are fixed, then among sub-cubes with rn non-

’s and an 1’s (apr), the proportion which have �n 1’s in
½kn; n� and dn 
’s in ½1;kn� has exponential rate

L2 ¼ L2ðr; c;k; a; �; dÞ

¼ L1ðða� �Þ=k; a;kÞ þ L1ð�=ð1� kÞ; a; 1� kÞ

þ L1ðd=ðk� aþ �Þ; 1� r;k� aþ �Þ

þ L1ðð1� r� dÞ=ð1� k� �Þ; 1� r; 1� k� �Þ.

(Here all four first arguments in L1 are in ½0; 1�, or else the
rate is �1.)
The expected number of LPI, with r;k; �; d given as

above, has exponential rate at most (and this is only an
upper bound)

L3 ¼ L3ðr; c;k; a; �; dÞ

¼ � ð1� rÞ logð1� rÞ � a log a� ðr� aÞ logðr� aÞ

� cð1� r=2Þ2 þ ðr� aÞ logð1� expð�cð1� r=2ÞÞÞ

þ ða� �Þ logð1� expð�c=2ÞÞ þ � logð1� expð�c=2Þ

� 1
2
dc expð�cð1� r=2ÞÞÞ þ L2ðr; c;k; a; �; dÞ.

The next to last line is obtained from (LPI1), as �n 1’s must
have dn 
’s on their left.
It follows that L4 can be obtained by

L4ðr; cÞ ¼ inf
k
sup
a;�;d

L3ðr; c;k; a; �; dÞ.
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If L4ðr; cÞo0, all LPI (for this c) a.a.s. have length at most
r. Numerical computations show that this gives a better
bound than 1� e�2c � ce�4c for cX0:38. Let us denote the
best upper bound from the two estimates by ruðcÞ. This
function is computed numerically and plotted in Fig. 3.
Appendix D. Proof of Eq. (10)

In this section we assume that genotypes have multi-
allelic loci, which are subject to random pair incompat-
ibilities. The model introduced in Section 5.2 is the most
natural, but is not best suited for our second moment
approach. Instead, we will work with the equivalent
modified model with m pair incompatibilities, each chosen
independently at random, and the first and the second
member of each pair chosen independently from the an

available alleles. We will assume that m ¼ 1
4

ca2n, label
c0 ¼ 1

4
c, and denote, as usual, the resulting set of

incompatibilities by F.
To see that these two models are equivalent for our

purposes, first note that the number of incompatibilities
which are not legitimate, in the sense that the two alleles
are chosen from the same locus, is stochastically
bounded in n. (In fact, it converges in distribution to a
Poisson(c0a2) random variable.) Moreover, by the Poisson
approximation to the birthday problem (Barbour et al.,
1992), the number of pairs of choices which result in the
same incompatibility in this model is asymptotically
Poisson(c0a2=2). In short, then, the procedure results in
the number m� Oð1Þ of different legitimate incompatibil-
ities. If m in the modified model is increased to, say,
m0 ¼ mþ n2=3, then the two models could be coupled so
that the incompatibilities in the original model are included
in those in the modified model. As the existence of a viable
phenotype becomes less likely when m is increased, this
demonstrates that Eq. (10) will follow once we show the
following for the modified model: for every �40 there
exists a large enough a so that c0o log a� � implies that
NX1 a.a.s.

To show this, we introduce the auxiliary random
variable
L ¼
ða� 1Þa

a � aað1� aÞ1�a

�

ðw2
0ð1�

1þ a
a
Þ
2
þ 4w0w1

a
a
ð1�

1þ a
a
Þ þ 2w2

1ð
ð1� aÞ

a
ð1�

1þ a
a
Þ þ ð

a
a
Þ
2
ÞÞ

c0a2

ðw0ð
a� 1

a
Þ
2
þ w1

2ða� 1Þ

a2
Þ
2c0a2

.

X ¼
X
s2Ga

Y
I2F

ðw01fjI\sj¼0g þ w11fjI\sj¼1gÞ,

where 1A is the indicator of the set A. The size of the
intersection I \ s is computed by transforming both the
incompatibility I and the genotype s to sets of (indexed)
alleles, and the weights w0 and w1 will be chosen later. To
intuitively understand the statistic X, note that when
w0 ¼ w1 ¼ 1, the product is exactly the indicator of the
event that s is viable and X is then the number of viable
genotypes N. In general, X gives different scores to
different viable genotypes—however, the crucial fact to
note is that X40 iff N40. Therefore

PðN40Þ ¼ PðX40ÞXðEðX ÞÞ2=EðX 2Þ,

which is how the second moment method is used
(Achlioptas and Moore, 2004).
As

Pðjs \ I j ¼ 0Þ ¼
a� 1

a

� �2

,

Pðjs \ I j ¼ 1Þ ¼
2ða� 1Þ

a2
,

we have

EðX Þ ¼ an w0
a� 1

a

� �2

þ w1
2ða� 1Þ

a2

 !m

.

Moreover

EðX 2Þ ¼
Xn

k¼0

an
n

k

 !
ða� 1Þk

�ðw2
0Pð00Þ þ 2w0w1Pð01Þ þ w2

1Pð11ÞÞ,

where Pð01Þ is the probability that I has intersection of size
0 with s ¼ 01 . . . 0k0kþ1 . . . 0n and of size 1 with
t ¼ 11 . . . 1k0kþ1 . . . 0n, and Pð00Þ and Pð11Þ are defined
analogously. Thus, if k ¼ an,

Pð00Þ ¼ 1�
1þ a

a

� �2

,

Pð01Þ ¼
2a
a

1�
1þ a

a

� �
,

Pð11Þ ¼
2ð1� aÞ

a
1�

1þ a
a

� �
þ 2

a
a

� �2
.

Let L ¼ La;w0;w1
ðaÞ be the nth root of the k ¼ ðanÞth term in

the sum for EðX 2Þ, divided by EðX Þ2. Hence
Let a
 ¼ ða� 1Þ=a. A short computation shows that L ¼ 1
when a ¼ a
.
If L41 for some a, then EðX 2Þ=ðEðX ÞÞ2 increases

exponentially and the method fails (as we will see below,
this always happens when w0 ¼ w1 ¼ 1, i.e., when X ¼ N).
On the other hand, if Lo1 for aaa
, and d2L

da2 ða

Þo0, then



ARTICLE IN PRESS
J. Gravner et al. / Journal of Theoretical Biology 248 (2007) 627–645 643
Lemma 3 from Achlioptas and Moore (2004) implies that
EðX 2Þ=ðEðX ÞÞ2pC for some constant C, which in turn
implies that PðN40ÞX1=C. The sharp threshold result
then finishes off the proof of Eq. (10).

Our aim then is to show that w0 and w1 can be chosen so
that, for c0 ¼ log a� �, L has the properties described in
the above paragraph. We have thus reduced the proof of
Eq. (10) to a calculus problem.

Certainly the necessary condition is that dL
da ða


Þ ¼ 0, and

dL
da
ða
Þ ¼ �

2

a3
ðw0ða� 1Þ � w1ða� 2ÞÞ2,

so we choose w0 ¼ a� 2 and w1 ¼ a� 1. (Only the
quotient between w0 and w1 matters, so a single equation
is enough.) This simplifies L to

L ¼ LaðaÞ ¼
ða� 1Þa

aaað1� aÞ1�a
�

a�
a� 1

a

� �2

�
ða� 1Þ4

a2

 !c0a2

ða� 1Þ2

a

� �2c0a2
.

Let j ¼ logL. We need to demonstrate that jo0 for a 2
½0; a
Þ [ ða
; 1� and that j00ða
Þo0. A further simplification
can be obtained by using x� Cx2p logð1þ xÞpx (valid
for all nonnegative x), which enables us to transform j
(without changing the notation) to

jðaÞ ¼ c0
a4

ða� 1Þ4
a�

a� 1

a

� �2

� a log a

� ð1� aÞ logð1� aÞ þ a logða� 1Þ � log a.

Now

j00ðaÞ ¼ 2c0
a4

ða� 1Þ4
�

1

að1� aÞ
.

Table 1

The lower bounds on g obtained by the method described in text,

compared to the easy upper bounds 4 log a

a l.b.on g 4 log a

3 1.679 4.395

4 2.841 5.546

5 3.848 6.438

6 4.714 7.168

7 5.467 7.784

8 6.128 8.318

9 6.715 8.789

10 7.242 9.211

20 10.672 11.983

30 12.608 13.605

40 13.944 14.756

50 14.960 15.649

100 18.017 18.421

200 20.982 21.194

300 22.663 22.816

400 23.846 23.966

500 24.759 24.859
So automatically, for c0 large but c0 ¼ oðaÞ, j00ða
Þo0 for
large a. Moreover, j cannot have another local maximum
when j0040. If jðaÞX0 for some aaa
, then this must
happen for an a in one of the two intervals ½0; 1=ð2c0Þ þ

Oððc0Þ�2Þ� or ½1� 1=ð2c0Þ � Oððc0Þ�2Þ; 1�. Now, j has a
unique maximum at a
 in the second interval. In the first
interval, a short computation shows that

jðaÞ ¼ ��� a log aþ O
log log a

log a

� �
,

which is negative for large a. This ends the proof. &

This method yields nontrivial lower bounds for g for all
aX3, cf. Table 1.
Appendix E. Existence of viable phenotypes

In this section we describe a comparison between models
from Sections 5.2 and 5.3 that will yield the result in
Section 5.3. We discretize the continuous phenotype space
and in the process obtain slightly dependent incompat-
ibilities which cause a loss of precision by the factor 4.
We begin by assuming that a ¼ 1=r is an integer, which

we can do without loss of generality. Divide the i’th
coordinate interval ½0; 1� into a disjoint intervals I i0; . . . ;
I i;a�1 of length r. Note that in our notation, the first
subscript of I specifies a particular trait while the second
subscript specifies a particular interval of the trait’s values.
To a phenotype x 2 P we assign an element DðxÞ of the
generalized hypercube Ga by DðxÞi ¼ j iff xi 2 I ij .
Note that DðxÞi ¼ DðyÞi implies that jxi � yijpr. There-

fore, as soon as I i1j1 � I i2j2 contains a point z 2 Pi1i2 , every
x with DðxÞi1 ¼ j1 and DðxÞi2 ¼ j2 has jxi1 � zi1 jpr

and jxi2 � zi2 jpr and is therefore inviable by definition.
Moreover, by the fundamental property of a Poisson
point location (e.g., Penrose, 1996), each product I i1j1 �

I i2j2 intersects Pi1i2 independently with probability
1� expð�lr2Þ�cr2=ð2nÞ, for large n. The result from
Section 5.2 implies that, when cr244 log a ¼ �4 log r,
a.a.s. no DðxÞ is viable and thus there is a.a.s. no viable
genotype.
On the other hand, let I � be the closed �-neighborhood of

the interval I in ½0; 1� (the set of points within � of I), and

consider the events that the square I
r=2
i1j1
� I

r=2
i2j2

contains a

point inPi1i2 . These events are independent if we restrict j1; j2
to even integers, as these squares are then disjoint. Moreover,
each event has probability 1� expð�4lr2Þ�4cr2=ð2nÞ,
for large n. We thus look for a viable genotype with DðxÞi
even for all i. This reduces the number of traits a by a
factor of 2, and it follows from Section 5.2 that a viable
genotype x with all DðxÞi even a.a.s. exists as soon as
4cr2o4ðlogða=2Þ � oð1ÞÞ ¼ ð�4 log r� log 2� oð1ÞÞ.
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