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We introduce a three-dimensional, computationally feasible, mesoscopic model for snow-crystal growth,
based on diffusion of vapor, anisotropic attachment, and a boundary layer. Several case studies are presented
that faithfully replicate most observed snow-crystal morphology, an unusual achievement for a mathematical
model. In particular, many of the most striking physical specimens feature both facets and branches, and our
model provides an explanation for this phenomenon. We also duplicate many other observed traits, including
ridges, ribs, sandwich plates, and hollow columns, as well as various dynamic instabilities. The concordance of
observed phenomena suggests that the ingredients in our model are the most important ones in the development
of physical snow crystals.
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I. INTRODUCTION

In this paper we exhibit some virtual snowflakes gener-
ated by a natural, fully three-dimensional algorithm for
snow-crystal evolution. The present study extends our earlier
work on growth and deposition �1–3�, and other previous
efforts in this direction �4,5�. The key features of our model
are diffusion of vapor, anisotropic attachment of water mol-
ecules, and a narrow boundary layer. All three ingredients
seem to be essential for faithful emulation of the morphology
observed in nature.

Growth of a snow crystal in a homogeneous environment,
that is, in constant weather conditions, is primarily depen-
dent on temperature, pressure, and vapor density. However,
the principles by which these determine how supersaturated
vapor attaches to a growing ice crystal are poorly understood
�6�. Therefore, incorporating this process into a mathematical
model in terms of tunable parameters is a sensible strategy.
While it is not a priori clear how our parameters correlate
with physical conditions, experimentation provides valuable
clues �see Sec. VII–XIII�. This approach also makes it pos-
sible to model inhomogeneous environments by varying the
parameters during the evolution �see Sec. XII�. As a reason-
able first step, the diffusion of latent heat, generated by so-
lidification �6�, is neglected, as are surface diffusion �6�, im-
pedance �7�, and other effects that may be important in some
regimes. Based on the verisimilitude of virtual snowflakes in
comparison to actual snow crystals �the most convenient re-
source for such comparison is Libbrecht’s field guide �8��, it
would appear that this approach is able to shed light on a
substantial portion of snow-crystal physics.

Our algorithm assumes a mesoscopic �micrometer� scale
of basic units for the ice crystal and water vapor, which
eliminates inherent randomness in the diffusion and the at-
tachment mechanism. This brings the process within reach of
realistic simulation; by contrast, any three-dimensional ap-

proach based on microscopic dynamics is completely beyond
the scope of present computing technology. Moreover, there
is ample evidence in the literature that the mesoscopic scale
is more than a matter of expedience. In snow crystals, the
surface defects known as microsteps that induce layer-by-
layer faceted growth often tend to bunch, creating
micrometer-scale macrostep dislocations �9,10�. Recent pho-
tomicrographs �e.g., �11�� provide convincing corroboration
for these structural features. We suspect that macrostep pro-
cesses promote a separation of scales that underlies the suc-
cess of our approach. We refer the reader to �3� for a brief
history of snow-crystal observation and modeling, the back-
ground for a two-dimensional version of our algorithm, and
many references to the literature. See also �12� for another
attempt at spatial mesoscopic modeling.

There are many papers and books, for a variety of audi-
ences, dealing with snowflake photography and classifica-
tion, the underlying physics, or some combination thereof, so
we will not offer a comprehensive review here. Excellent
introductions to the subject include the classic book by Na-
kaya �13�, early empirical studies and classification schemes
�14,15�, and more recent papers and books by Libbrecht
�16–18,6,19,20�. Among research papers that attempt to de-
cipher the three-dimensional aspects of snow crystals, the
standout reference is �21�; also worth mentioning are
�22–25�.

As a preview of the capabilities of our model, let us illus-
trate the crystal tip instability and initiation of side branching
studied in the laboratory by Gonda and Nakahara �11�. A
sequence of four still frames from their paper was repro-
duced in �3� so we will not show it here. But Fig. 1 depicts
the top view of a corresponding virtual snowflake at four
different times �12 000, 15 000, 18 000, and 21 000�, and
oblique views of the crystal’s top and bottom at the final
time. The parameters are �01=2.8, �10=�20=2.2, �11=�21
=1.6, �30=�31=1, ��0.005, �10=�20=0.001, �=0.0001
otherwise, �=0.01, and �=0.12. Their role, and that of the
initial state, will be described in Sec. II. The similarity be-
tween the real and simulated sequences is striking: in both
instances a defect arises at a characteristic distance from the
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crystal tip, becomes more pronounced, and later gives rise to
a sidebranch with its own ridge structure similar to that of
the main branch. Note also that our virtual snowflake has its
ridges, and most other markings, on the top side; the bottom
is almost featureless. This is due to a small downward drift in
our model, an aspect we will discuss later in more detail. The
direction of the drift represents the motion of the crystal in
the opposite direction—we prefer upward motion because
interesting features then appear on top, although this would
obviously correspond to the bottom of a falling snowflake.
We should also note that the drift value means that, during its
evolution, our simulated crystal moved for about 200 space
units, which is comparable to the diameter it reached. This is
typical of drift values that erase features on one side without
otherwise significantly changing the morphology. Our model
thus predicts that, during growth, a significantly larger range
of motion relative to the surrounding vapor is not possible
for most interesting physical snow crystals such as dendrites
or plates.

Another example of our algorithm’s potential to make
predictions about basic aspects of snow-crystal growth is the
location of markings. From micrographs, it is almost impos-
sible to tell whether these are on the top or bottom of or
inside a given physical specimen, so little attention has been
paid to this issue to date. We have gathered a considerable
amount of evidence that interior markings are quite common
�see Secs. VII–IX�.

Our account will focus on seven case studies that repro-
duce many features commonly observed in actual snow-
flakes: ridges, ribs, flumes and other “hieroglyphs,” forma-
tion of sidebranches, emergence of sandwich plates, hollow
columns, hollow prism facets, and so forth. We also explore
dependence on the density of vapor, the aforementioned ef-
fect of drift, and inhibition of sidebranches by the boundary
layer. Varying meteorological conditions during growth are
considered very important �8� so we include several ex-
amples, such as plates with dendritic tips and capped col-
umns that are believed to arise due to sudden changes in the
weather. However, we will encounter virtual snowflakes that
grew in a homogeneous environment but give the impression
they did not. We will occasionally address dependence of the
final crystal on its early development, and conclude with a
few eccentric examples that may be too brittle to occur in

nature. These typically arise near a phase boundary, when the
dominant direction of growth is precarious. A complete col-
lection of virtual snowflakes from our case studies �with
some additional information, such as simulation array sizes�,
a collection of movies, and a slide show are available for
download �36�.

The first order of business, in the next section, is to de-
scribe the virtual snowflake algorithm in detail. Four subse-
quent sections discuss computer implementation and visual-
ization tools, mathematical foundations, parameter tuning,
and extensions of the model. The remainder of the paper is
then devoted to the case studies.

II. THE ALGORITHM FOR THREE-DIMENSIONAL
SNOW-CRYSTAL GROWTH

Our basic assumptions are as follows.
�A1� The mesoscopic �micrometer-scale� building blocks

are �appropriately scaled� translates of the fundamental
prism, which has a hexagonal base of side length 1 /�3 and
height 1.

�A2� In its early stages of growth, from microscopic to
mesoscopic, the crystal forms a hexagonal prism, and then it
maintains this shape until it reaches the size of a few mi-
crometers across.

�A3� Diffusion outside the crystal is isotropic except pos-
sibly for a small drift in the vertical direction.

�A4� Crystallization rates depend on the direction and lo-
cal convexity at the boundary.

�A5� Melting at the crystal edge creates a boundary layer.
The side �rectangular� faces of the fundamental prism are

commonly referred to as prism faces, while the top and bot-
tom �hexagonal� ones are called basal faces.

The lattice for our model is T�Z, where T is the planar
triangular lattice �see Fig. 2�. This is not precisely the crys-
talline lattice of hexagonal ice Ih, which is obtained by re-
moving certain edges and sites from T�Z, and then apply-
ing a periodic deformation �12�, but we are constructing a
mesoscopic model that should obscure such fine details.
Therefore, each x�T�Z has eight neighbors: six in the T
direction and two in the Z direction.

At each discrete time t=0,1 ,2 , . . ., At�T�Z represents
the virtual snowflake, and with each site x�T�Z we asso-
ciate two varieties of mass:

bt�x� = the boundary mass at x at time t

„frozen if at�x� = 1, unfrozen if at�x� = 1… ,

dt�x� = the dif fusive mass at x at time t

�vapor� .

The state of the system at time t at site x is therefore
(at�x� ,bt�x� ,dt�x�), where at is the attachment flag,

at�x� = �1 if x � At,

0 otherwise.
�

Our dynamics assumes that the diffusive and the unfrozen
mass both change to ice when the site joins the crystal, and

FIG. 1. �Color online� Tip instability and oblique top �left� and
bottom �right� views of the final crystal.
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stay in that state thereafter. The two types of mass can coex-
ist on the boundary of the virtual snowflake, but only bound-
ary mass persists inside the virtual snowflake, while only
diffusive mass occurs outside and away from the boundary.
A conceptual summary of the dynamics is provided by Fig.
2. We encourage the reader to consult it often as a supple-
ment to the dry mathematical description that follows.

It should be noted that there are only two mass fields, one
of which �dt� diffuses while the other �bt� is stationary. The
boundary layer dynamics, whereby a portion of the boundary
mass bt can change back to dt, is a crude attempt to capture
something of the hybrid state of a snow crystal’s quasiliquid
layer �26�, while keeping our algorithm as simple as pos-
sible. It is perhaps surprising that, despite this gross oversim-
plification, which ignores key features such as surface mo-
bility, our model reproduces growth processes as well as it
does. It is also important to note that close to the bulk melt-
ing point, where the �anisotropic� thickness of the physical
quasiliquid layer diverges, our model is much less realistic
than at lower temperatures.

The initial state will consist of frozen mass 1 at each site
of some finite set, on which also a0�1, with a0 and b0�0

and d0�� everywhere else. In keeping with assumption A2,
the most natural choice for this finite set, a singleton at the
origin, often does not work well, as its Z-direction neighbors
see seven neighbors off the crystal’s boundary. This means
that it is common, even for low �, that the dynamics imme-
diately triggers a rapid expansion in the Z direction. To pre-
vent this singularity, our canonical initial state consists of a
hexagon of radius 2 and thickness 1, consisting of 20 sites.
Other nonsymmetric initial states will be discussed later.

Let us now describe the update rule of our snowflake
simulator, which performs steps �1�–�4� below in order every
discrete time unit. The reader should observe that total mass
is conserved by each step, and hence by the dynamics as a
whole.

The set

Nx
T = 	x
 � 	y:y is a neighbor of x in the T direction


is called the T neighborhood of x and consists of x together
with its six neighbors in the direction of the triangular lattice
T, visualized as horizontal in Fig. 2. Similarly, the set Nx

Z

= 	x
� 	y :y is a neighbor of x in the Z direction
 is the Z

FIG. 2. �Color online� At the upper left is a portion of the underlying stacked triangular lattice T�Z. The central site represented as a
larger black ball has its neighborhood indicated in black, and a translate of the fundamental prism is centered at that site. In the upper right
detail, translates of the fundamental prism are drawn around each site of a small crystal. Seven boundary sites are also depicted and each is
labeled by two counts determined by its boundary configuration. For example, the “21” site has 2 horizontal �T� neighbors and 1 vertical �Z�
neighbor; consequently, this site needs boundary mass �21 to join the crystal. The lower panel shows a flowchart for the algorithm. There are
three epochs in the life of a site. Away from the crystal’s boundary, it only exchanges diffusive mass dt with its neighbors. Once the crystal
grows to reach the site’s neighborhood, two additional effects, melting and freezing, promote exchange between diffusive mass dt and
boundary mass bt. Final changes occur once the boundary mass exceeds the threshold � �which depends on the boundary configuration�: the
site attaches and the two types of mass merge into bt.
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neighborhood of x and consists of x together with its two
neighbors in the direction of the vertical Z direction. We let
Nx=Nx

T�Nx
Z be the set comprising x and all its eight neigh-

bors. The �outside� boundary of the virtual snowflake at time

t is then �At= 	x�At :y�At for some y�Nx
 and we let Āt
=At��At.

The complement of a set A is denoted by Ac. Also, we use
degree and prime notation to denote the amounts of mass
before and after a step or substep is completed. If there is
more than one intermediate step, we use double primes. This
is necessary since some mass allocations may change more
than once during a single cycle of the steps. At the end of
each cycle the time t advances to t+1.

A. Steps of the update rule

1. Diffusion

Diffusive mass evolves on At
c in two, or possibly three,

substeps. The first substep is by discrete diffusion with uni-
form weight 1

7 on the center site and each of its T neighbors.
Reflecting boundary conditions are used at the edge of the

crystal. In other words, for x� Āt
c,

dt��x� =
1

7 �
y�Nx

T
dt

��y� . �1a�

The second substep does the same in the Z direction:

dt��x� =
4

7
dt��x� +

3

14 �
y�Nx

Z,y�x

dt��y� . �1b�

For x��At, and y�At, the term dt�y� in �1a� is replaced by
dt

��x�, while the term dt��y� in �1b� is replaced by dt��x�.
The reason for the weights in �1b� is as follows. Imagine

we tessellate R3 with translates of the fundamental prism and
scale the lattice T�Z so that the lattice points are in the
centers of these prisms. The “bonds” in the top left frame of
Fig. 2 thus all have unit length, and we eventually visualize
the crystal by drawing prisms that are centered about sites of
At. Rule �1b� ensures that diffusion on the scaled lattice is
isotropic, in agreement with assumption A2.

As mentioned in the Introduction, there is also good rea-
son to consider the more general case of diffusion with drift
in the Z direction, corresponding to downward �or upward�
motion of the snowflake. The third diffusion substep is thus

dt��x� = 	1 − ��1 − at�x − e3��dt��x�


+ ��1 − at�x + e3��dt��x + e3� , �1c�

where e3= �0,0 ,1� is the basis vector in the Z direction. The
parameter � measures the strength of the drift, and needs to
be small for the dynamics to remain diffusion limited.

2. Freezing

Assume that x��At. Let nt
T�x� be the number of its T

neighbors y�Nx
T with at

��y�=1 if this number is 0, 1, or 2;
we declare nt

T�x�=3 if this number equals or exceeds 3.
Moreover, nt

Z�x�=0 if there are no Z neighbors y�Nx
Z with

at
��y�=1, and nt

Z�x�=1 otherwise. These two numbers repre-
sent the geometry at a boundary site x �see top right frame of
Fig. 2�, and determine the rate � of freezing in this step, the
rate � of melting �step 4�, and the attachment threshold �
�step 3�.

A proportion 1−�(nt
T�x� ,nt

Z�x�) of the diffusive mass at x
becomes boundary mass. That is,

bt��x� = bt
��x� + �1 − �„nt

T�x�,nt
Z�x�…�dt

��x� ,

dt��x� = �„nt
T�x�,nt

Z�x�…dt
��x� . �2�

The seven parameters ��i , j�, i� 	0,1
, j� 	0,1 ,2 ,3
, i+ j
�0 together constitute one of the ingredients of the bound-
ary dynamics. The other ingredient � appears in step 4 be-
low. We assume that � decreases in each coordinate since
“more concave corners” at the boundary �At, i.e., those with
more neighbors in At, should catch diffusing particles more
easily.

3. Attachment

Assume again that x��At and define the neighborhood
counts as in step 2. Then x needs boundary mass at least
�(nt

T�x� ,nt
Z�x�) to join the crystal:

If bt
��x� � �„nt

T�x�,nt
Z�x�…, then at��x� = 1. �3�

Again, we have seven parameters ��i , j�, i� 	0,1
, j
� 	0,1 ,2 ,3
, i+ j�0, and the assignment makes physical
sense only if � decreases in each coordinate.

In addition, we assume that at��x�=1 automatically when-
ever nt

T�x��4 and nt
Z�x��1. This last rule fills holes and

makes the surface of the crystal smoother, without altering
essential features of the dynamics.

At sites x for which at��x�=1, the diffusive mass becomes
boundary mass: bt��x�=bt

��x�+dt
��x�, dt��x�=0. Attachment is

permanent, and there are no further dynamics at attached
sites. Thus we do not model sublimation, although it may
play a significant role in the last stages of snow crystal
evolution �see �8�, p. 27�.

4. Melting

A proportion �(nt
T�x� ,nt

Z�x�) of the boundary mass at each
boundary site becomes diffusive mass. Thus, for x��At,

bt��x� = �1 − �„nt
T�x�,nt

Z�x�…�bt
��x� ,

dt��x� = dt
��x� + �„nt

T�x�,nt
Z�x�…bt

��x� . �4�

Again, � is decreasing in each coordinate.

III. NOTES ON COMPUTATION AND VISUALIZATION

Following the same strategy as for our previous two-
dimensional model �3�, the dynamics actually runs on the
cubic lattice Z3, which can be mapped onto T2�Z. Our basic
computational engine is written in C, but MATLAB is used for
mapping and visualization. As mentioned previously, the vir-
tual snowflakes are depicted by drawing visible boundaries
of translates of the fundamental prism centered on sites of At.
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Since this straightforward procedure makes jagged vertical
boundaries, we apply a smoothing algorithm at the boundary
that enlarges the crystal by no more than one mesoscopic
unit. �This algorithm has no effect on the dynamics and has
not been applied to the small virtual snowflake in Fig. 2.�
MATLAB’s PATCH routine renders the faces. For better results
we then emphasize edges using the LINE routine.

MATLAB’s visualization tools certainly provide adequate
representations for detailed investigation of the resulting
crystals. They do not, however, give a satisfactory compari-
son with the best snowflake photographs �20,19,8�, typically
taken from directly above the �predominantly two-
dimensional� crystal, which is in turn illuminated from be-
low. This viewpoint can be effectively simulated by ray trac-
ing, as implemented here by the POV-RAY software �27�. Our
program automatically outputs a file with a triangulation of
the crystal’s boundary, which is then used by the MESH2 com-
mand in POV-RAY.

We would like to point out that both the algorithm and
visualization procedures require considerable computing
power and memory. At present, our simulations are very time
consuming, barely feasible on commercial personal comput-
ers. �In fact, an adaptive resolution algorithm is necessary to
make the boundary descriptions manageable.� Progress in
studying virtual snowflakes is therefore quite slow, preclud-
ing systematic classification of the dynamics. Our goal has
been to find representative examples that seem to replicate
physical snow crystals and thereby shed light on their
evolution.

When there is no drift ��=0�, the initial state is a hexago-
nal prism, and the space is a finite lattice in the shape of
hexagonal prism with appropriate periodic boundary condi-
tions, symmetry can be exploited for computational effi-
ciency. In fact, in this case it suffices to compute the dynam-
ics on 1 /24 of the whole space. However, there are two good
reasons for giving up complete symmetry of the rule. First,
the initial state may not be symmetric, and second, the dif-
fusion may have a drift. For computations to still proceed at
a reasonable speed, we give up only reflectional symmetry
around the xy plane �recall that the drift is only in the Z
direction�, allowing the initial state to depend on the z coor-
dinate, but retaining its hexagonal symmetry in the x and y
coordinates. This increases the space and time demands of
the fully symmetric program by a factor of 2.

The program stops automatically when the density at the
edge of the lattice falls below a given proportion of the initial

density �typically 2� /3 or � /2�, or when the crystal gets too
close to the edge �virtual snowflake radius greater than 80%
of the radius of the system�.

IV. CONNECTION TO PARTIAL DIFFERENTIAL
EQUATION, AND SIZE OF THE PARAMETER SPACE

For simplicity, we assume that �=0 until the last para-
graph of this section. Mathematically, our algorithm is a dis-
crete space and time version of a free boundary or Stefan
problem �17,18,6�. This is a partial differential equation
�PDE� in which the crystal is represented by a growing set At
and the density �i.e., supersaturation� of vapor outside it as
u=u�x , t�. Then u is 0 on the boundary �At, and satisfies the
diffusion equation outside the crystal

�u

�t
= 	u, x � At

c. �5�

The velocity of the boundary at a point x��At with outside
normal 
 is given by a function

w� �u

�

,
 . �6�

Considering the slow growth of At, the diffusion equation �5�
may be simplified to its equilibrium counterpart 	u=0
�17,18,6�, which makes this into an anisotropic version of the
Hele-Shaw problem.

Presumably under diffusion scaling, in which space is
scaled by �, time by �−2, and �→0, the density field and the
occupied set in our model converge to a solution of the Ste-
fan problem. However, a rigorous justification for this con-
nection at present remains elusive. Identification, or at least
approximation, of the limit w for given model parameters
seems more promising but is still a demanding computa-
tional task.

The boundary velocity function w=w�� ,
��0 is defined
for ��0 and three-dimensional unit vectors 
�S2, and
specifies the boundary velocity in the direction 
 when the
gradient of the vapor density in that direction is �. In order to
develop a rigorous mathematical theory, the most convenient
assumptions are that w is continuous in both variables, non-
decreasing in �, and satisfies w�� ,
�C� for some constant
C independent of � and 
. Even under these conditions, one
may only expect that the solution exists in a suitable gener-
alized sense. The most promising in this context are usually

FIG. 3. �Color online� A “failed” virtual snowflake.

FIG. 4. �Color online� The oblique �MATLAB-rendered� and top
�ray-traced� views of the crystal.
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viscosity solutions, constructs that satisfy appropriate in-
equalities �28�.

Under the above conditions, the nonisotropic melting ver-
sion of the Stefan problem �5� and �6�, which has w replaced
by −w in �6�, has a unique viscosity solution at all times t
�0, starting from any smooth initial crystal. This is proved
in �28� for the isotropic case �when w is constant�; assuming
the listed properties of w, the proof extends to our general
setting. On the other hand, the freezing version �5� and �6�
considered here presents a much greater challenge. It has
long been known that the crystal’s boundary will not remain
smooth �29�, and no general theory of existence and unique-
ness of generalized solutions has been developed. The inher-
ent difficulties will be no mystery once we present our simu-
lations, which feature a considerable variety of singularities
and instabilities. These may make direct numerical computa-
tion with the PDE questionable, explaining why numerical
PDE-based models for snow-crystal growth have not been
satisfactory �cf. �30��. For further mathematical theory and
references, we refer the reader to �28,31�.

For the sake of further discussion in this section, we posit
that our scheme approximates an appropriate generalized so-
lution, presumably of viscosity type, of �5� and �6�, and thus
that the macroscopic evolution of the crystal is uniquely de-
termined by its initial state and the velocity function w.

For the model introduced in Sec. II, w�� ,u� will be linear
in �, since the attachment and melting rates are independent
of the vapor density. This may not always be the case; in
fact, some of the literature even considers the possibility that
w is nonmonotone in � �18,3�. Analysis of such cases would
present new theoretical challenges, and from simulations of
our three-dimensional �3D� model it appears that nonmono-
tonicity is not needed for observed phenomena in nature.
Monotone nonlinearity, arising from monotone density-
dependent rates, is harder to dismiss and worth further
investigation—for instance, it is possible that w vanishes for
very small �.

The function w is determined by very few physical pa-
rameters, perhaps just two: temperature and atmospheric
pressure �17,18,6�. Therefore, possible evolutions from a
fixed seed comprise a three-dimensional manifold �its coor-
dinates being the supersaturation level, temperature, and
pressure� in an infinite-dimensional space of possible veloci-
ties w. Much of the ongoing snow-crystal research consti-
tutes an attempt to understand the structure of this manifold,
a daunting task since the underlying �perhaps quantum� at-
tachment physics is very poorly understood, controlled ho-
mogeneous environments are hard to design, and crystal evo-
lution is difficult to record. Our model does not have these
problems. Instead, its main weakness is the number of free
parameters that need to be tuned to approximate w at a par-
ticular temperature and pressure. It helps that our parameters

have intuitive meaning, but finding a particular realistic vir-
tual snowflake involves approximating an a priori infinite-
dimensional object w by one of finite but high dimensional-
ity. The challenge is compounded by very incomplete
information—all that is typically observable in nature is the
final crystal, which may have been subjected to numerous
changes in conditions and orientation during growth, as well
as sublimation and perhaps even artifacts of the recording
process. It is thus no surprise that our parameter selection is
an arduous and imprecise task.

Evolution of our virtual snowflakes involves tens of thou-
sands of parallel updates of arrays comprising millions of
sites, using a nonlinear local rule, and thus cannot be viewed
as a tractable function of the parameters and the initial state.
Our algorithm’s ability to reproduce so much of the detailed
structure observed in physical specimens consequently can-
not be attributed to reverse engineering by twiddling a mod-
est number of system parameters.

In the next section we will describe some ad hoc rules
that we have used to generate our case studies, but the issue
of parameter selection is in dire need of further investigation.
What we can say is that the best examples are quite sensitive
to perturbations in w. Thus they require good approximations
and a large number of judicious parameter choices. In addi-
tion, the dependence on the initial seed is often quite dra-
matic. These observations underscore both the marvel and
the fragility of natural snowflakes.

At the same time, we wish to emphasize the conceptual
simplicity of our model. The large parameter space is a con-
sequence of geometry rather than an excessive number of
modeling ingredients. Apart from the two scalar
parameters—density � and drift �—we have only three vec-
tor parameters—attachment threshold �, freezing rate 1−�,
and melting rate �—whose high dimensionality arises from
the many possible boundary arrangements. The parameter set
can be reduced, but some tuning will always be necessary, as
illustrated by the “random” crystal in Fig. 3. This was ob-
tained by choosing ��0.1, ��0.001, �=0.1, �=0, and all
�’s equal to 1 except �01=1.73 and �10=�20=1.34. These
values are in a sensible neighborhood of the parameter space,

FIG. 5. �Color online� The
crystal at times 820, 863, 1600,
4044, 5500, 7099, and 9500.

FIG. 6. �Color online� Oblique and side views of the crystal
from a different initial state.
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but the last attachment rates were selected by chance. The
result has some physically reasonable features, but one im-
mediately notices an excessive density of branches and inor-
dinately high ridges. In general, visual comparison with
snow-crystal photographs is the only method we use to de-
cide whether a virtual snowflake is a “failure” or a “success.”

V. EFFECTIVE CHOICE OF PARAMETERS FOR
SIMULATIONS

While realistic choices of parameters require considerable
guesswork, there are a few guidelines we have developed.
Some come from mathematical arguments, others from ex-
perimentation; both are described in this section.

We typically choose the drift parameter � last, and on the
order of 0.01. This keeps ��1/�array size�, as required for a
diffusion limit, and produces essentially one-sided markings.
The rest of this section is devoted to other parameters and
assumes �=0.

Our simulator represents diffusion by discrete averaging
in time t, which is also discrete. The bulk effects of this
operation expand at rate �t, although the extreme radius of
its influence, which is known as the light cone in cellular
automata research, grows linearly in t. If the initial density �
of our discrete vapor field is too large, then the crystal may
expand in some direction as fast as the light cone, or perhaps
fall behind it by O��t�. We call parameter sets leading to this
behavior the Packard regime; it is clearly not physical, as it
depends on the discrete nature of the averaging. However,
systems of this sort are able to generate fractal plates remi-
niscent of Packard snowflakes �4,3� and exhibit one variety
of faceting �cf. �12��. In our simulations we systematically
avoid the Packard regime by keeping the density low. For the
extremal points of our virtual snowflakes not to expand as
fast as the light cone, the conditions are

�1 − �01�� � �01, �1 − �10�� � �10,

as is easy to see from the description of the rule. Our densi-
ties are typically considerably smaller, since large densities
generate expansion that is too rapid to be realistic, at least in
its initial stages. As mentioned previously, a surprisingly im-
portant role is also played by the choice of initial seed.

On the other hand, it is clear that a very large melting rate
will stop growth altogether. This happens if the flow out of
boundary mass exceeds the flow in just before that mass
exceeds the threshold for attachment. A sufficient condition
for continual growth in all directions is therefore

�01�01 � �1 − �01��, �10�10 � �1 − �10�� ,

since the 01 and 10 boundary arrangements always have the
slowest potential growth. In the great majority of examples
we will present, parameters for the 20 and 10 arrangements
agree. In this case, the last condition is necessary as well—if

FIG. 7. �Color online� At density �=0.15, the sidebranches have
particularly well-defined ridges.

FIG. 8. �Color online� At density �=0.09, the flumes are well
delineated.

FIG. 9. �Color online� Density �=0.05 results in sectored
plates.

FIG. 10. �Color online� Density �=0.045 results in sectored
branches.
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it does not hold, then the growth is convex-confined in the T
direction.

Let us now describe a few rules of thumb when searching
for virtual snowflakes that emulate nature. We commonly
start with a reduced parameter set. Namely, we set the �’s to
a common value, say, ��0.1. Then we select two different �
parameters, �01 and �10=�20=�11, with all the remaining �’s
fixed to 1. The size of �20 controls the strength of the con-
vexifying mechanism, assumed to be the same in both the xy
and z directions. Indeed, if �20 is large, then the crystal will
remain a perfect hexagonal prism for a long time. The only
other parameters are the common value of all �’s and the
vapor density �. This is a more manageable four-parameter
space that encodes four essential elements of three-
dimensional snowflake growth, each with a single tunable
parameter: diffusing supersaturation level ���, convexifying
strength ��20�, boundary layer smoothing ���, and preference
for the Z direction over the T direction ��01 /�20�. This
scheme is used to identify the neighborhood of a desired
morphological type in phase space. Then parameters are per-
turbed for added realism.

One of the most important lessons of our two-dimensional
model �3� was that the melting parameter � inhibits side-
branching and is therefore important for dendrite formation.
When ��0, it seems impossible to avoid an excessive den-
sity of branches. Indeed, this role of � is easily understood.
Namely, � creates a positive density at the boundary, due to
flow out of the boundary layer. This density has the effect of
reducing the ambient vapor density by a fixed amount, inde-
pendent of location, and hence disproportionately affects re-
gions of smaller density. �To a very rough first approximation
�6�, the expansion speed is proportional to �� /�t when �
�0.� Since there is clearly less mass between branches than
at the tips, growth and sidebranching there are stunted by
increasing �.

Realistic “classic” dendrites occur for a relatively narrow
range of choices for �, once the other parameters are held
fixed. Typically, though, the other parameters need to be per-
turbed along with �; increasing � alone tends to erode all
complex structure.

The markings seen on snow crystal plates are sometimes
called hieroglyphs. These often have fairly regular geometric
forms, such as ridges, flumes, ribs, and circular shapes, but
can also exhibit more chaotic patterns. In photomicrograph
collections �14,20,19,8�, it is usually unclear whether the
marks are on the outside of the crystal or within what we call
sandwich plates. In our experiments, the inner structures are
much more prevalent, so we are glad to observe that they are
abundant in nature �32�. To obtain nice outer markings, the
ratio �01 /�20 needs to be sufficiently large, but there is then
a tendency for the crystal to become too three dimensional.
Again, the correct choice is often rather delicate. Inner mark-
ings occur generically for small values of this ratio.

Finally, different �’s may appear to be a more natural
mechanism to enforce anisotropy than different �’s, as they
directly correspond to sticking, or killing, of particles at the
crystal’s boundary. However, for this effect to be substantial,
the killing at the boundary must be slow and thus the �’s
need to be very close to 1; this causes the already slow
growth to proceed at an even more sluggish pace. While less
physically appealing, we view the �’s as a reasonable com-
promise for the sake of computational efficiency.

VI. VARIANTS AND EXTENSIONS OF THE MODEL

A. Uniform virtual snowflakes

Since attachment thresholds � vary, the mass of the final
crystal is not uniform. There is a variant of our algorithm that
removes this defect with little change in observed morphol-
ogy. Assume that there is no automatic filling of holes; in-
stead, boundary mass exactly 1 is needed for attachment
when nt

T�x��4 and nt
Z�x��1. Then a uniform crystal is ob-

tained by performing the following additional step just after
step 3 in the simulator:

1. Postattachment mass redistribution

To redistribute any excess mass from the attached site to
its unattached neighbors, let

nt
c�x� = �	y � Nx:at

��y� = 0
�

be the number of nonattached neighbors. Then, for every x
with at

��x�=0,

bt��x� = bt
��x� + �

y:at
��y�=1

bt
��y� − 1

nt
c�y�

.

B. Simulation without symmetry

As explained in Sec. III, at the cost of a 24-fold slowdown
compared to our fully symmetric model, implementation of

FIG. 11. �Color online� Density �=0.4 results in sandwich
plates with inner ridges.

FIG. 12. �Color online� The
crystal of Fig. 11 at earlier times.
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the algorithm without exploiting symmetry makes it possible
to study the evolution from arbitrary initial seeds. Such an
extension is necessary in order to produce virtual snowflakes
corresponding to exotic forms such as triangular crystals,
split stars, and bullets. We have conducted a few experiments
along these lines with our planar model �3�, but in three
dimensions a simulator dramatically faster than our current
one is needed. We have future plans to develop a suitably
high-performance parallel version.

C. Random dynamics

Our only three-dimensional virtual snowflakes to date are
deterministic, since randomness would also require the just
discussed simulation without symmetry. We propose to in-
clude an additional parameter � representing residual noise
on the mesoscopic scale, as we did in the two-dimensional
setting �3�. Again, � would need to be quite small, say on the
order 10−5. The random perturbation of diffusive mass from
�3� is not suitable in 3D since it is not physical to violate
mass conservation. Instead, a small random slowdown in the
diffusion rate is more appropriate. To this end, first denote
the �linear� operation on the field dt

� in �1a�–�1c� by D; thus
step 1 can be written as dt�=D�dt

��. Next, let �t�x�, t�0, x
�T�Z, be independent random variables, equal to ��0 or
0, each with probability 1 /2. Here the field � represents the
proportion of particles that refuse to diffuse at position x and
time t.

The randomized step i now reads

dt� = D��1 − �t�dt
�� + �tdt

� = D�dt
�� + �tdt

� − D��tdt
�� .

In a natural way, this represents small random temperature
fluctuations in space and time.

Similarly, one could introduce a small proportion of par-
ticles that refuse to freeze in �2�, or melt in �4�; e.g., �2�
would be replaced by

bt��x� = bt
��x� + �1 − �„nt

T�x�,nt
Z�x�…�dt

��x��1 − �t�x�� ,

dt��x� = �„nt
T�x�,nt

Z�x�…dt
��x��1 − �t�x�� + dt

��x��t�x� .

VII. CASE STUDY 1: RIDGES AND PLATES

Our prototypical virtual snowflake has �=0.1 and the ca-
nonical initial state of radius 2 and thickness 1. Figure 4
depicts the crystal after 70 000 time steps, when its radius is
about 350. Its parameters are �01=2.5, �10=�20=�11=2,
�30=�21=�31=1, ��0.1, ��0.001, and �=0. These pa-
rameters reflect significant convexifying strength, pro-
nounced, but weaker, preference for horizontal growth, and
weak boundary effect.

We invite the reader to compare the simulated crystal with
some of the photographs in �19� and especially with Fig. 1�h�
in �21�, a snowflake obtained at a temperature about −13 °C.
We think of our length unit �the width of the fundamental
prism� as about 1 �m, so even the sizes of the two objects
roughly match. Both objects feature extensive branching but
also regularly shaped plates, or facets. Simultaneous emer-
gence of realistic branches and facets within a mathematical
model with a single choice of parameters is apparently un-
precedented. As anticipated by Libbrecht �6,19,8�, these two
aspects are thus explained by diffusion-limited aggregation,
anisotropic attachment, and exchange of mass at the bound-
ary. Two opposite mechanisms compete—vapor density
depletion promotes branching instabilities, and a convexify-
ing force repairs them—but neither is able to prevail.

Perhaps the most striking features shared by the virtual
snowflake in Fig. 4 and physical ones are the ridges, eleva-
tions in the middle of each main branch, with less pro-
nounced counterparts on the sidebranches. We begin by il-
lustrating how these ridges are formed and maintained. In the
process we also encounter the branching instability, when
the initial growth of a thin hexagonal plate is no longer vi-
able and it gives rise to the six main branches.

FIG. 13. �Color online� �=0.105: a fern dendrite.

FIG. 14. �Color online� �=0.1: a classic dendrite.

FIG. 15. �Color online� �=0.095: fewer sidebranches.

FIG. 16. �Color online� �=0.09: no significant sidebranches on
this scale.
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As shown in Fig. 5, ridges are formed quite early in the
evolution, by mesoscopic bumps known as macrosteps that
are near the center of the plate. This is how the ridges grow
�very slowly� in the vertical direction—compare with times
4044 and 7099, which also feature such bumps. The ridges
spread to a characteristic width, but sharpen to a point near
the branch tip. One can also observe the commonly observed
flumes �called grooves in �8�� that form on both sides of a
ridge.

The small indentation that emerges, due to lower vapor
density, in the middle of each prism facet at time 5500, has
appeared several times before. However, this is the first in-
stance when the growth is unable to repair it. Instead, the
growth there virtually stops, while the six main arms con-
tinue to grow and eventually produce two types of side-
branches: common, relatively thick double-plated branches
that we call sandwich plates, and more unusual thin plates
with their own ridges. The tip of each arm assumes its char-
acteristic shape by the final frame of Fig. 5.

It is perhaps surprising how dramatically this scenario de-
pends on the initial �micrometer-scale� state. Keeping every-
thing else the same, we change the initial prism to one with
radius 2 and thickness 3. The previous rather complex and
aesthetically pleasing evolution is replaced by a growing
double plate �Fig. 6�. �Remarkably, even adding a small drift
does not help matters much.� This dichotomy arises fre-
quently in our model—within a neighborhood of the param-
eter space that produces planar crystals there are two stable
attractors: one with outside ridges and the other a split plate
with ridges on the inside. As much of the literature points
out, split plates are extremely common in physical crystals
�cf. �22��.

Finally, let us experiment with changing the density �. We
exhibit five crystals �Figs. 7–11�, each with the canonical
initial condition and all other parameters of the prototype
unchanged, but at different densities and different final times.
Dramatically lower density does promote faceting �8,20�, but
a moderate perturbation seems to mainly promote slower
growth, without a change in morphology.

The example in Fig. 11 �pictured at time 120 000� never
undergoes the branching instability illustrated in Fig. 5, al-

though it does develop fairly standard ridges that persist until
about time 40 000. This is the time shown in the first frame
of Fig. 12; subsequent frames show the evolution in time
increments of 10 000. We observe that a completely different
sandwich instability takes place: first the tips and then the
sides of the virtual snowflake thicken and develop sandwich
plates. It is also clear from the time sequence that this mor-
phological change is accompanied by a significant slowdown
in growth. We should emphasize that this slowdown is not
due to the depletion of mass on a finite system: much larger
systems give rise to the same sandwich instability well be-
fore the edge density diminishes significantly. Neither is this
slowdown accompanied by a significant growth in the Z
direction—in the period depicted, the radius in the Z direc-
tion increases from 6 to 7, whereas the radius in the T direc-
tion increases from 67 to 87. Instead, much of the growth
fills space between the ridges, the remnants of which end up
almost completely below the surface.

Note that the virtual snowflake of Fig. 10 is also experi-
encing the sandwich instability at about the capture time. The
difference in that case is that the growing crystal also expe-
rienced the branching instability earlier in its development.

VIII. CASE STUDY 2: CLASSIC DENDRITES

For this series of virtual snowflakes, �01=1.6, �10=�20
=1.5, �11=1.4, �30=�21=�31=1, ��0.1, all ��0.008, �
=0, and growth starts from the canonical initial state. The
parameters reflect a very small preference for horizontal
growth, a weak convexifying tendency, but a pronounced
boundary layer. We will again look at how morphology is
affected by different vapor densities �. The simulations argue
persuasively that the frequency of sidebranches decreases
with decreasing �. When �=0.105 �Fig. 13�, the branches are
so dense that the crystal is rightly called a fern, while the
examples with �=0.1 �Fig. 14� and 0.095 �Fig. 15� have the
classic look of winter iconography. These are our largest
crystals, with radii around 400. A more substantial decrease
in � eliminates any significant sidebranching on this scale,
resulting in a simple star for �=0.09 �Fig. 16�. As should be
expected from Sec. VII, further decrease finally produces a
sandwich instability at the tips, resulting in thick double
plates �Fig. 17�. In this instance, slow growth at the branch
tips is accompanied by significant fattening in the Z direc-
tion.

The crystal in Fig. 17 is captured at about time 60 000.
The series of close-ups in Fig. 18 provides another illustra-
tion of the sandwich instability—snapshots of the same vir-
tual snowflake are shown at time intervals of 1000, starting
from time 37 000. Our final example, with �=0.081 �Fig.
19�, demonstrates that a further decrease in density makes
the crystal increasingly three dimensional.

FIG. 17. �Color online� �=0.082: the tip undergoes a sandwich
instability.

FIG. 18. �Color online�
Close-up of the sandwich instabil-
ity at �=0.082.
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IX. CASE STUDY 3: SANDWICH PLATES

When growth in the Z direction is much slower than in the
xy plane, outer ridges never develop. Instead, the dynamics
grows a featureless prism, which, when sufficiently thick,
undergoes a sandwich instability, producing inner ridges.
Much later the crystal experiences the branching instability,
with platelike branches that bear a superficial resemblance to
Packard snowflakes �4,2� during early stages.

Throughout the evolution the external surface of the crys-
tal has few markings, whereas inside features include ridges
and ribs, which signify gradual thinning of the plates from
the center outward before the branching instability. The sole
surface designs are reverse shapes, which occur when the
crystal grows in the Z direction from buds that arise close to
the tips. These macrostep nuclei result in rapid growth of a
single layer in the T direction until this layer outlines a
nearly circular hole near the crystal’s center; the hole then
proceeds to shrink much more slowly.

We note that this observation provides a convincing ex-
planation for the circular markings seen on many snow-
crystal photographs �8,20�. It also suggests that ribs are pre-
dominantly inner structures. While outer ribs could occur
due to instabilities or changing conditions �cf. Fig. 11�, there
is scant evidence of them in electron microscope photo-
graphs �32�, which completely obscure inner structure. On
the other hand, those photos reveal an abundance of sand-
wich plates, which appear as the crystal centers, at the tips of
the six main arms, and as sidebranches.

We now present two examples. Both start from the ca-
nonical seed and have very strong preference for horizontal
growth, quite a strong convexifying tendency, and a very
faint boundary layer presence. In the first, depicted in Fig.
20, �01=6, �10=�20=2.5, �11=2, and the remaining �’s are
1. All �’s are 0.1, except that �01=0.5, ��0.0001, and �
=0.08. The final radius of the crystal at the capture time
100 000 is about 150. Note that the main ridge is interrupted:
while initially it connects the two plates �and it has darker
color in the ray-traced image as the background can be seen
through it�, it later splits and each plate has its own ridge.
There is a suggestion of this phenomenon in real crystals
�e.g., �8�, p. 26�.

Our second example �Figs. 21 and 22� has interrupted
main ridges and a few ribs. The parameter set now has �01
=6.5, �10=�20=2.7, and �=0.15. The remaining values are
as before, and the final sizes �this one at t=36 100� are com-
parable. We provide a few intermediate stages and a detail of

the inner structure. Observe the buds at times 25 883 and
31 671; also note that the outermost rib at time 19 000 later
disappears.

X. CASE STUDY 4: THE ROLES OF DRIFT AND
MELTING

From some of the electron micrographs at �32�, it appears
possible that the basal facets may have ridges and other
markings on one side only, while the other side is nearly
featureless. As far as we are aware, no attempt has been
made to “turn over” these specimens and confirm the asym-
metry, but �24,25� offer a theoretical explanation. They sug-
gest that the one-sided structure is a consequence of early
growth and that ridges are actually vestiges of the skeleton of
hollow prisms such as Fig. 31 in Sec. XI �see Fig. 3 of �25��.
In fact, it is widely held that the micrometer-scale prism
from which a prototypical snowflake evolves develops slight
asymmetries in the radii of its two basal facets, and that the
larger facet acquires an increasing advantage from the feed-
back effect of diffusion-limited growth. As a result many
crystals have a stunted hexagonal plate at their center. In �13�
this effect is described on p. 206 and in sketch 15 of Fig.
369.

Another potential source of asymmetry in the Z direction
is identified in �22�, Sec. 3.5, and �21�, p. 18, based on cloud
tunnel experiments in the laboratory. Planar snowflakes evi-
dently assume a preferred orientation parallel to the ground
as they slowly fall, resulting in a small upward drift of the
diffusion field relative to the crystal.

We emulate these aspects of asymmetric growth by means
of the drift � in step �1c� of our algorithm and asymmetry of
the initial seed as mentioned in Sec. III. Consider first the
virtual snowflake of Fig. 1 and the closely related sectored
plate in Fig. 23. The former starts from our fundamental
prism and never undergoes the sandwich instability, but de-
velops ridges on the bottom side and an almost featureless
top due to the presence of �=0.01. The dynamic parameters
�which reflect a strong convexifying tendency and preference
for horizontal growth, but a weak boundary layer� of the
sectored plate below are identical, but growth starts from a
mesoscopic prism that is 5 cells high, with radius 7 at the top
and 3 at the bottom. The idea here is to mimic the situation
where the upper basal plate has established an advantage
over the lower basal plate early in the evolution. As is clear
from the side view, in contrast to Fig. 6, growth of the lower
facet stops completely due to diffusion limitation even
though the small drift offers a slight advantage in the early

FIG. 19. �Color online� Fattening from the tip inward at �
=0.081.

FIG. 20. �Color online� A sandwich plate.
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stages. �According to �22,23�, falling snowflakes prefer the
more aerodynamically stable orientation of Fig. 23.� Very
many photos of physical snow crystals show evidence of
such a stunted simple plate at the center; see �8�, pp. 75–76,
for further discussion.

The remaining examples of this section also start from
slightly asymmetric seeds, experience a small drift, and have
almost all their external markings on one side. Our goal is to
explore the role of the melting rate, in much the same way
that we studied density dependence in Sec. VII, by varying �
in a series of virtual snowflakes with all other parameters
held fixed. In each instance, the seed has height 3, lower
radius 2, and upper radius 1. For the next four crystals, �01
=3, �10=�20=�11=1.4, �30=�21=�31=1, ��0.1, �=0.01,
and �=0.14, so the convexifying force and the preference for
horizontal growth are both moderate. Moreover, �01=0.002,
�30=�11=�21=�31=0.001 and we vary only the common
value of �10=�20. This value governs the speed of tips
and—as explained in Sec. V—has more effect in regions of
low density, so an increase inhibits sidebranching.

Like the sectored plates just discussed, these are relatively
rare virtual snowflakes with outside ridges on the main arms
and most side branches. All our modeling experience sug-
gests that crystal tips tend to symmetrize with respect to the
T direction, managing to avoid the sandwich instability only
under quite special environmental conditions. We have seen
little evidence in our simulations for the mechanism of ridge
formation proposed in �24,25�, so we feel that drift is a more
likely explanation of one-sided structures in snowflakes.

Starting with the classic fern of Fig. 24, the common
prism facet melting threshold �10=�20 is gradually increased
to twice the original value in Figs. 25–27. Stellar dendrites
with fewer and fewer sidebranches result, until the final vir-
tual snowflake has only a few short sandwich plates on the
sides of each arm.

The final example of this section is a classic simple star
�Fig. 28�, a crystal with no side branches at all and a char-

acteristic parabolic shape to its tips �cf. �8�, p. 57 bottom�.
This elegant virtual snowflake required considerable tweak-
ing of parameters; they are �01=3.1, �10=1.05, �20=1.03,
�11=1.04, �30=1.02, �21=1.01, �31=1, ��0.01, �01=�30
=�11=�21=�31=0.01, �10=�20=0.03, �=0.005, and �
=0.16. Note that convexifying is very weak, but both the
preference for horizontal direction and the boundary effect
are strong.

XI. CASE STUDY 5: NEEDLES AND COLUMNS

Let us now turn to the common but less familiar snow
crystals that expand primarily in the Z direction. As one
would expect, these have �01 small compared to �10 and �20,
but surprisingly small advantage often suffices. We offer
three virtual snowflakes that emulate their physical counter-
parts quite well. All start from the canonical seed. Our first
example, with a substantial bias toward attachment on the
basal facets, is a �simple� needle. In Fig. 29, �01=2, �10
=�20=�11=4, �30=�21=�31=1, ��0.1, ��0.001, �=0,
and �=0.1, so the convexifying force is very strong, but the
boundary layer is weak. This virtual snowflake reproduces
structure observed in nature and the laboratory: slender hol-
low tubes, often with cablelike protuberances at the ends �cf.
�13�, Fig. 135, �8�, pp. 67–68�.

Next, Fig. 30 simulates the common type of snow crystal
known as a hollow column. Here the bias toward attachment
on the basal facets is not as pronounced. The parameter set is
�01=1, �10=�20=2, �30=�11=�21=0.5, �31=1, ��0.1, �
�0.01, �=0, and �=0.1. Evidently, the hole starts develop-
ing early on. See pp. 64–66 of �8� for photos of actual hol-
low columns and a qualitative description of their growth.

The final example of this section is a column whose facets
are hollow as well. The morphology of Fig. 31 occurs when
the rates of expansion in the two directions are not very
different. Photos and a description of this sort of snowflake
appear on pp. 35–37 of �8�. Here �01=1.5, �10=�20=1.6,
�11=�30=�21=�31=1, ��0.1, ��0.015, �=0, and �=0.1.
The convexifying tendency is weaker; instead, the boundary
effect is more pronounced.

XII. CASE STUDY 6: CHANGE OF ENVIRONMENT

In his pioneering research, Nakaya �13� reproduced sev-
eral of the most striking types of snowflakes found in nature
by subjecting the cold chamber in his laboratory to a pre-
cisely controlled schedule of temperature and humidity

FIG. 21. �Color online� Another sandwich plate.

FIG. 22. �Color online� The
plate of Fig. 21 at t=19 000,
25 883, 25 900, 25 950,26 000,
31 671. The detail is from the first
time, obtained by cutting the crys-
tal along the plane z=0 and zoom-
ing in on the bottom half of the
upper portion.
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FIG. 23. �Color online� A sectored plate with a stunted double,
from the top �left� and side �right�.

FIG. 24. �Color online� A fern dendrite for �10=�20=0.005.

FIG. 25. �Color online� Reduced sidebranching for �10=�20

=0.008.

FIG. 26. �Color online� Further reduction in the number of side-
branches for �10=�20=0.009.

FIG. 27. �Color online� When �10=�20=0.01, very few side-
branches remain.

FIG. 28. �Color online� A simple star.

FIG. 29. �Color online� A needle.

FIG. 30. �Color online� A hollow column.

FIG. 31. �Color online� A column with hollow prism facets.
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changes, either sudden or gradual. Based on such experi-
ments, he argued that plates with dendritic extensions, for
example, are formed when a snowflake’s early growth occurs
in the upper atmosphere and then it drops to another layer
more conducive to branching ��13�, p. 16�.

In this section we mimic such varying environments by
considering the effect of an abrupt change of parameters on
some of our previous virtual snowflakes. Let us begin with
two examples of the type cited in the last paragraph: plates
with dendritic extensions. Both start from a prism that is
three cells high with radius 2 at the top and 1 at the bottom.
The first stage for both is a simple plate similar to the virtual
snowflake of Fig. 1, but with a delayed branching instability.
The initial parameters are �01=3.5, �10=�20=�11=2.25,
�30=�21=�31=1, ��0.005, ��0.001, �=0.01, and �
=0.12. The first stage runs until time 8000 in the first ex-
ample, and until time 12 500 in the second. At that time most
parameters remain the same, but in order to promote branch-
ing we change �10=�20=�11 to 1.15 �1.4� and �10=�20 to
0.006 �0.004�. The results, once the two virtual snowflakes
have reached a radius of 200 cells, are shown in Figs. 32 and
33. Predictably, the first example has more branching in its
dendritic phase since the prism facet attachment threshold is
lower. The large image on the cover of �8� shows a beautiful
natural example of this type.

A hybrid evolution at the opposite end of the spectrum is
described in �8�, pp. 51–53, and many of the most striking
snowflakes in �20� are of this type. As presumably in nature,
conditions need to be just right for the corresponding virtual
snowflake to evolve. In this vein, we present three virtual
snowflakes that begin as stellar dendrites with minimal
branching and later encounter an environment promoting
plates. All start from a prism of height 5 with top radius 6
and bottom radius 2. The first stage runs the simple star
dynamics of Fig. 28 until time 4000, 3000, or 2000, respec-
tively. Then new parameters for the three experiments with
higher attachment thresholds are run until time, respectively,
24 000, 20 000, and close to 20 000. Common parameters

are �30=�31=1, ��0.1, �=0.16. In Fig. 34, the remaining
parameters are �01=3.0, �10=�20=2.2, �11=2.0, �21=1.1,
��0.01, �=0.005. Note that in this instance the branches of
the star broaden considerably after the change of environ-
ment, and the tips form sandwich plates.

By raising the attachment thresholds somewhat we avoid
the sandwich instability and obtain instead the sectored-plate
extensions with outside ridges seen in Fig. 35. Here �01
=3.5, �10=�20=2.45, �11=2.25, �21=1.1, �10=�20=0.002,
�=0.001 otherwise, �=0.015.

Our final broad-branched example interpolates between
the previous two Fig. 36. The values of � are large enough to
avoid the sandwich instability, but small enough that side-
branching leads to sectored-plate structure of the extensions.
Here �01=3.0, �10=�20=2.25, �11=2.05, �21=1.05, �
�0.001, �=0.015.

We conclude this case study with two crystals that com-
bine a three-dimensional column and two-dimensional
plates. These are the tsuzumi, or capped columns, described
on pp. 69–74 of �8�. They are thought to arise when crystals
are transported to higher and colder regions of the atmo-
sphere by a passing storm. Without a preferred orientation, it
is most reasonable to model these as driftless. Both our vir-
tual snowflakes use the canonical seed and evolve with the
parameters for the hollow column of Fig. 30 until time
20 000. Then they run with new parameters that promote
planar growth, until time 80 000 for the first example, 60 000
for the second. Common values for the two examples are
�01=5, �30=�21=�31=1, ��0.1, ��0.001, �=0, and �
=0.1. The difference is the common value �10=�20=�11,
which is 2.4 in Fig. 37 and 2.1 in Fig. 38. Higher attachment
thresholds delay the branching instability in the first capped
column so the caps are simple plates, as opposed to sectored
plates in the second.

The transition period from column to cap in laboratory
tsuzumi is described in some detail by Nakaya ��13�, p. 221;

FIG. 32. �Color online� A plate with fern extensions.

FIG. 33. �Color online� A plate with dendrite extensions.

FIG. 34. �Color online� A broad-branched stellar crystal with
sandwich-plate extensions.

FIG. 35. �Color online� A broad-branched stellar crystal with
sectored-plate extensions.
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see also the sketch on p. 222�. We remark that our virtual
snowflake versions evolve in the same way. Namely, for a
considerable time after the change of environment, outward
growth occurs almost exclusively along the 18 edges of the
hexagonal column. This is a diffusion-limited effect similar
to the hollowing in Fig. 31. Then, rather suddenly, growth in
the T direction takes over.

XIII. CASE STUDY 7: ECCENTRIC CRYSTALS

Our final collection features virtual snowflakes that result
from a careful search through parameter space and are quite
sensitive to any change. They are close to critical, near the
phase boundary between dominant growth in the Z and the T
directions. Consequently, they may be rare in nature, though
variants of some of the forms have been observed, and even
represent morphological types in the Magono-Lee classifica-
tion �15�. All our final examples start from the canonical
seed.

As mentioned in Sec. II, starting from a single cell our
algorithm has a strong tendency to grow rapidly in the Z
direction due to the immediate onset of a needle instability.
Even if the initial mesoscopic prism is wider in the T direc-
tion, it is still quite common for this instability to arise later
on if the dynamics are close to critical. After an initial phase
of typical planar growth, needles suddenly nucleate at con-
centric locations scattered over the central plate or arms. Fig-
ure 137 of �13� shows an excellent example of this type in
nature, and our first two examples illustrate a similar phe-
nomenon in our model. The conventional explanation for
such hybrid types, called stellar crystals with needles in �15�,
involves a sudden change in the environment, but this is one
of several cases where our algorithm suggests that homoge-
neous conditions can sometimes produce the same effect.

Figure 39 has features like a classic planar snowflake that
has developed rime from attachment of surrounding water
droplets. In fact these protrusions are potential needle
instabilities—the two symmetric rings close to the center and
the tips are stunted needles, whereas the intermediate needles
have successfully nucleated. The parameters of this virtual
snowflake are �01=1.58, �10=�20=�11=1.5, �30=�21=�31
=1, ��0.1, ��0.006, �=0, and �=0.1. Partial symmetry
of bumps in many natural crystals, statistically unlikely to be
the result of rime, often indicates vestiges of rims and ribs
after sublimation, but can also be due to nascent needles, as
in the middle specimen of Plate 116 in �13�. Since the loca-
tions where needles nucleate are quite sensitive to changes in
parameters, residual randomness in the mesoscopic dynamics
is apt to degrade the symmetry.

The next three examples have ��1, ��0.03, �10=�20
=0.1, �30=0.05, and �11=�21=�31=0.01. The remaining pa-
rameters for Fig. 40 are �01=0.11 and �=0.06. This virtual
snowflake is a rather extreme instance of a stellar crystal
with needles in which the planar portion is a thick but very
narrow simple star.

Our next two examples seem never to have been seen at
all, and it is clear why: even if they managed to grow, their
thin plates would be extremely brittle and susceptible to ran-
dom fluctuations. They are characterized by very small dif-
ferences in the growth rates. After starting as planar crystals,
they suddenly nucleate thin structures extending into the
third dimension. In Fig. 41 �01=0.12 and �=0.057; in Fig.
42 �01=0.116 and �=0.06. For obvious reasons, we call
these butterflakes. They are idealizations of the stellar crys-
tals with spatial plates in �15�; chaotic snow crystals with
thin plates growing every which way are relatively common.

We conclude the paper with a family of five related ex-
amples. The first is a common sandwich plate �cf. �8�, p. 44,
lower right� with parameter values �01=1.41, �10=�20=1.2,

FIG. 36. �Color online� Another broad-branched stellar
crystal.

FIG. 37. �Color online� A column capped with hexagonal
plates.

FIG. 38. �Color online� A column capped with sectored
plates.

FIG. 39. �Color online� A stellar dendrite with stunted and
nucleating needles.
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�11=�30=�21=�31=1, ��0.1, ��0.025, �=0, and �
=0.09 �Fig. 43�.

The remaining four are minor perturbations, which never-
theless look quite different �Figs. 44–47�. Namely, even
though their model parameters are constant over time, they
undergo “exploding tips” quite similar to crystals such as the
one in Fig. 35 that results from inhomogeneous environmen-
tal conditions. The principle behind all four variants is the
same: eventually, the growing tip thickens and slows down
considerably. Usually this happens close to the beginning of
the evolution �as, in fact, occurred in the dynamics leading to
Fig. 43�, so the virtual snowflake is unremarkable. But with
some experimentation we find cases when the onset of the
sandwich instability is delayed and the final picture can be
quite dramatic. The complex inner patterns are the result of
extraordinarily intricate dynamics. Parameter values that dif-
fer from those of Fig. 43 are given in the captions.

XIV. SUMMARY AND CONCLUSIONS

We have presented a simple model of snow-crystal
growth that is based on a strong convexifying force up to
micrometer size and three physically reasonable mecha-
nisms: diffusion of water molecules off the crystal, exchange
between attached and unattached molecules at the boundary,
and nonisotropic attachment rates that favor concave parts of
the boundary over convex ones. The variety of observed phe-
nomena we are able to replicate strongly suggests that these
are the most important ingredients for the formation of
physical snow crystals. Below we list further conclusions
from our experiments. We are confident they hold for our
mathematical model, but it remains to be seen to what extent
they can be verified in the laboratory or in nature.

�a� Presence of branches and plates in snow crystals can
be adequately explained by the three mechanisms built into
our model.

�b� In predominantly two-dimensional crystals, the veloc-
ity of expansion in the prism direction does not need to be
much larger than the one in the basal direction. In Sec. VIII,
for example, this difference is less than 7%.

�c� The range of motion of a snow crystal relative to the
diffusing vapor has to be quite limited during most of its
growth, on the order of its final size. This motion is roughly
equivalent to a small drift of water vapor, which can affect
the distribution of markings on the basal facets of the crystal
but otherwise has a limited effect on morphology. However,
drift, along with early random fluctuations, appears to play
an important role in the evolution of double plates in the case
where one of them is stunted.

�d� Many, perhaps the majority of simple snow crystals
are sandwich plates: two thin plates with ridges, ribs, and
other markings between them. These are the result of a
newly identified sandwich instability that can occur either
early in the evolution, or after the crystal has reached a siz-
able diameter, perhaps even 100 �m or more. The latter sce-
nario may create the illusion of a sudden change in vapor
density, temperature, or pressure. The sole surface markings
of sandwich plates are circular reverse shapes resulting from
nucleation near the tips.

�e� Markings do appear on the surface �rather than be-
tween sandwich plates� of predominantly planar virtual
snowflakes for a very narrow range of parameters, suggest-
ing that the most attractive snow crystals occur near a phase
boundary. We are nevertheless able to replicate commonly
observed phenomena such as ridges, flumes, and side-
branches with and without markings.

�f� Changes in environmental conditions do result in
changes in morphology. These correspond well to experi-
mental results for synthetic snow crystals �19�.

�g� In dendritic crystals, lower vapor density first leads to
lower frequency of sidebranches, then to sandwich instabili-
ties and relatively thick plates.

FIG. 40. �Color online� A simple star with needles.

FIG. 41. �Color online� A butterflake with wings in the direc-
tions of the main arms.

FIG. 42. �Color online� A butterflake with side wings.

FIG. 43. �Color online� A sandwich plate with broad
branches.
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�h� The melting rate regulates the ability of attached mol-
ecules at the boundary to detach. Increasing this rate is an-
other mechanism to reduce sidebranching, arguably more im-
portant than reduced density.

�i� Three-dimensional structures such as needles and col-
umns are generically hollow, and form easily when growth in
the basal direction is much preferred. Prism faces of such
crystals also become hollow as this preference is diminished.

�j� Very interesting phenomena occur in our virtual snow-
flake experiments when the preference for growth in the
prism direction is only slight. These include the needle insta-
bility �nucleation of thin needles that grow in the basal di-
rection�, butterflake instability �thin plates that grow or-
thogonally to the main plane of growth�, and exploding tips
�dramatic widening of a starlike crystal’s tips�. Evidence for
physical relevance of such eccentric dynamics is inconclu-
sive.

As we have discussed in Sec. IV, a serious limitation of
our model is poor understanding of how mesoscopic attach-
ment rates are determined by supersaturation, temperature,
and pressure. The underlying physical processes could hardly
be simpler: a snow crystal arises from nothing more than the
freezing of water vapor into solid ice. Yet many aspects of
snow crystal growth are not understood at even a qualitative
level, and for many years it was impossible to create com-
puter models that bore even a vague resemblance to real
snowflakes. The difficulty is one that always plagues
bottom-up systems: processes at the molecular scale ulti-
mately determine structure at much larger scales. In our case,
dynamics at the ice surface determines the rate at which mol-
ecules condense under different conditions, and these rates in
turn determine the overall structures that form. We need to
understand the surface molecular dynamics in considerable
detail and we need to know how crystal growth results in
complex structures. The algorithm introduced here offers a

viable approach to the second task, and should at least offer
valuable clues for the first, thereby contributing to future
understanding of the underlying physics at the molecular
level.

Meanwhile, our virtual crystals seem to offer some utility
in their own right. Several meteorologists are using simula-
tion to analyze the radar and satellite microwave remote
sensing properties of falling snow. This entails detailed cal-
culation of the scattering of microwave radiation by snow
crystals. One of the most significant obstacles has been the
lack of a realistic and adjustable geometric model for snow-
crystal shapes. To date, researchers have been forced to work
entirely with two-dimensional digitized images of snow crys-
tals collected in the field �33�. Our algorithm should expand
the range of crystal habits that can be studied, enhance the
available spatial resolution of those structures, and add the
crucial third dimension.

Finally, the dynamics represented in our algorithm appar-
ently govern anisotropic, diffusion-limited crystal growth in
materials other than ice. For instance, freezing of the Al-Sn
alloy results in crystals which are studied and modeled in
�34,35�. Our approach extends easily to this case by chang-
ing the stacked triangular lattice T�Z to the cubic lattice Z3.
Much more intriguing are protein crystals consisting of Neis-
seria gonorrhoeae pilin, a molecule that assembles on the
surfaces of bacteria and mediates the interactions of bacteria
with each other and with human cells. Even though the indi-
vidual molecules are very large, and have an extremely com-
plex geometry in comparison with H2O, Forest of the Uni-
versity of Wisconsin Department of Bacteriology has
demonstrated �37� that aggregates may display the same
mixture of hexagonal faceting and branching observed in
snow crystals.

FIG. 44. �Color online� Perturbed parameters �01=1.25, �
=0.091.

FIG. 45. �Color online� Perturbed parameter �01=1.5.

FIG. 46. �Color online� Perturbed parameter �01=1.19.

FIG. 47. �Color online� Perturbed parameter �01=1.25.
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