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Symmetry classes of alternating-sign 
matrices under one roof 

By GREG KUPERBERG* 

Abstract 

In a previous article [22], we derived the alternating-sign matrix (ASM) 
theorem from the Izergin-Korepin determinant [12], [19], [13] for a parti- 
tion function for square ice with domain wall boundary. Here we show that 

the same argument enumerates three other symmetry classes of alternating- 

sign matrices: VSASMs (vertically symmetric ASMs), even HTSASMs (half- 
turn-symmetric ASMs), and even QTSASMs (quarter-turn-symmetric ASMs). 
The VSASM enumeration was conjectured by Mills; the others by 
Robbins [30]. We introduce several new types of ASMs: UASMs (ASMs with 

a U-turn side), UUASMs (two U-turn sides), OSASMs (off-diagonally sym- 
metric ASMs), OOSASMs (off-diagonally, off-antidiagonally symmetric), and 

UOSASMs (off-diagonally symmetric with U-turn sides). UASMs generalize 

VSASMs, while UUASMs generalize VHSASMs (vertically and horizontally 

symmetric ASMs) and another new class, VHPASMs (vertically and hori- 

zontally perverse). OSASMs, OOSASMs, and UOSASMs are related to the 

remaining symmetry classes of ASMs, namely DSASMs (diagonally symmet- 

ric), DASASMs (diagonally, anti-diagonally symmetric), and TSASMs (totally 
symmetric ASMs). We enumerate several of these new classes, and we provide 
several 2-enumerations and 3-enumerations. 

Our main technical tool is a set of multi-parameter determinant and Pfaf- 

fian formulas generalizing the Izergin-Korepin determinant for ASMs and the 

Tsuchiya determinant for UASMs [37]. We evaluate specializations of the de- 

terminants and Pfaffians using the factor exhaustion method. 

1. Introduction 

An alternating-sign matrix (or ASM) is a matrix with entries 1, 0, and 

-1, such that the nonzero entries alternate in sign in each row and column, 
and such that the first and last nonzero entry in each row and column is 1. 

*Supported by NSF grant DMS-9704125 and by a Sloan Foundation Research Fellowship. 
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Mills, Robbins, and Rumsey conjectured the following formula for the number 
of ASMs of order n: 

THEOREM 1 (Zeilberger). There are 

A(n) = 1!4!7!... (3n- 2)! 
- 

n!(n + 1)!(n + 2)!.. (2n - 1)! 

n x n ASMs. 

In 1995, two proofs of the alternating-sign matrix theorem appeared. The 
first proof, by Zeilberger, showed that ASMs are equinumerous with totally 
symmetric, self-complementary plane partitions [38]. The second proof relied 
on the equivalence between ASMs and square ice, and on a determinant formula 
found by Izergin in work with Korepin [12], [13], [19] for a square ice partition 
function [22]. The Izergin-Korepin determinant, in turn, depends crucially on 
the Yang-Baxter equation. 

In this article we extend our previous argument to three other symmetry 
classes of ASMs: 

THEOREM 2. The number of n x n ASMs is given by 

A(n) - (-3)(2) 3(j -i)+ 1n 

The number of 2n + 1 x 2n + 1 vertically symmetric ASMs (VSASMs) is given 
by 

i,Av(j<2n+1 j - + 2n + 1 
21j 

The number of 2n x 2n half-turn symmetric ASMs (HTSASMs) is given by 

AHT(2n) (3() 3(j - i) + 2 

A(n) 
l)i j-i+n 

The number of 4n x 4n quarter-turn symmetric ASMs (QTSASMs) is given by 

AQT(4n) = AHT(2n)A(n)2. 

In the statement of Theorem 2 and throughout this article, subscripts and 
products range from 1 to n unless otherwise specified. 

The formulas in Theorem 2 were conjectured by Robbins [30] except for 
the VSASM case, which is due to Mills [31]. Robbins also conjectured formu- 
las for several other types of ASMs, which we discuss in Section 7. The most 
interesting property of all of these enumerations, both proven and conjectured, 
is that they are round, meaning a product of small factors. Not all types of 
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ALTERNATING-SIGN MATRICES 837 

ASMs come in round numbers. For example, Robbins found that the num- 
ber of totally symmetric ASMs (TSASMs) is probably not round. All of the 
round integers that we compute come from roundness of polynomials, an even 

stronger property which we discuss in Section 5. 
Our main technical tool is a set of determinant and Pfaffian formulas for 

ASM partition functions Theorem 10. Theorem 10 could be as important as 
the enumerations which follow from it, but it is too complicated to state in 

summary here. The formulas include the Izergin-Korepin determinant and a 
determinant due to Tsuchiya [37]. They imply a number of interesting divisi- 
bilities that generalize several that were found experimentally by Robbins [30]. 

/0 0 0 + 0 0 0\ 
0 0 + - + 0 0 

+ 0 - + - 0 + 
0 0 + - + 0 0 

0 + - + - + 0 

0 0 + - + 0 0 

\0 0 0 + 0 0 0/ 

Figure 1. An VSASM with x-weight x2. 

Our arguments for Theorem 2 apply to the x-enumeration of some of the 

symmetry classes when x = 2 and x = 3. In the x-enumeration, the weight of 
a symmetric ASM is xn if n of the orbits of the entries under symmetry are 

-1, excluding any -Is that are forced by symmetry. An example is given in 

Figure 1. (In the figures, we use + and - for 1 and -1.) Note that all of the 
2-enumerations other than that of QTSASMs are known by other methods [9], 
[10], [30], [4], [5], [15], [14], [32], [26], [27], [21]. Our results are the following: 

THEOREM 3. The 2- and 3-enumerations of ASMs and VSASMs are 

given by 

A(n;2) 2(2) 

3n 2n 3(j-i)+1 A(n;3) = 2n2n j - 
2j 3(-i 

Av(2n+1;2) = 2n2-n 

Av(2n + 1; 3) 22n2n I 3(j - i) + 
,j<2n+ 3(j - i) 
2{i,21j 
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The 2-enumerations of even-sized HTSASMs and QTSASMs are given by 

AHT(2n;2,l) = 2 j 2(-i) + 1 
k,3 2(j - i) 

2fj-i 

AQT(4n; 2) = (-1)(2)22n2n 4(j -i) +1 
.ij j--+n 

We will consider the y-weight of a 2n x 2n HTSASM, which is yk if the 
HTSASM has k nonzero entries in the upper left quadrant. This yields the 
(x, y)-enumeration of HTSASMs, which is round when y is -1 and x is 1 or 3. 
Although the enumeration of VHSASMs remains open, we will enumerate and 
3-enumerate a closely related class, VHPASMs 1 (vertically and horizontally 
perverse). A VHPASM has dimensions 4n + 1 x 4n + 3 for some integer n. 
It satisfies the alternating-sign condition and it has the same symmetries as 
a VHSASM, except that the central entry (*) has the opposite sign when 
read horizontally as when read vertically. The simplest VHPASM is given in 
Figure 2. 

(0 0 0 + 0 0 0 
0 + - + 0 

0 + - 0 + 0 

V0 0 0 + 0 0 O 

Figure 2. The simplest VHPASM. 

VHPASMs come from consideration of two other types of ASMs with U- 
turn boundary called UASMs and UUASMs2. Figure 3 shows an example of 
a UASM. As the example indicates, a UASM is vertically just like an ASM. 
Horizontally the signs alternate if we read the 2k - 1st row from left to right, 
and then continue to alternate if we read the 2kth row from right to left. 
Likewise both the columns and the rows of a UUASM are like the rows of a 
UASM. We define the x-weight of a UASM or a UUASM be the number of 
-Is, as before. We define the y-weight of a UASM to be yk if k of the U-turns 
are oriented upward in the corresponding square ice state. We define the y- 
weight of a UUASM the same way using the U-turns on the right, and define 
the z-weight of a UUASM to be zk if k of the U-turns on the top are oriented 
to the right. Thus we can consider the (x, y)-enumeration of UASMs and the 

1Also known as /3-ASMs, since their boundary conditions are incompatible with VHS. 

2Also known as Unix-to-Unix ASMs. 

838 



839 ALTERNATING-SIGN MATRICES 

(z, y, z)-weight of UUASMs. 

' O O +) 
O +_J 
+- Oz 
O o +J 
O + O) 

O O O 

Figure 3. A UASM. 

Finally we will consider OSASMs (off-diagonally symmetric ASMs, i.e., 
symmetric ASMs with a null diagonal), OOSASMs (off-diagonally, off-antidi- 
agonally symmetric), and UOSASMs (off-antidiagonally symmetric UUASMs). 
UOSASMs include as a special case those TSASMs (totally symmetric ASMs 
with 0s on the diagonals except in the center). As with UASMs, the y-weight 
of a UOSASM is yk if k of the U-turns on the top are oriented to the right. By 
contrast, the y-weight of an OOSASM is pk if there are 2k more ls than-ls 
in the upper left quadrant. In the statement of the theorem we index a given 
type of ASM by the length of one of its rows7 counting the length twice if the 
row takes a U-turn, and we include z-, y-, and z-weight where applicable. For 
example Auo(8n; , y) is the weighted number of 4n x 4n UOSASMs. 

THEOREM 4. There exist polynomials satisfying the equations 

= 2Av(2n + 1; x)Av(2n; x) 
= Av (2n + 1; x)Av (2n + 2; x) 
= (y + l)nAv(2n + 1; x) 

= A(n; x)A(2) (2n; x, i1) 

= Av(2n + 1; x)A(2) (4n; x, y, z) 

= Ao(2n; x)A(2) (4n; x, y) 

= A(1) (4n; x)A(2) (4n; x) 

= A(lt(8n; x)A(2t(8n; x, y) 

= - A(2) (4n; x, 1, 1)A(2) (4n; x) 

= 2AU2) (4n; x, 1, 1)A(2) (4n + 4; x) 
= (-x)nA(l) (4n; x) 

= (-x)nA(lt(8n; x, l)A(l) (8n; x, 1). 

A(2n; X) 

A(2n + 1; X) 

Au(2n;z,y) 

AHT(2n; X, i1) 

Auu(4n; x, y, z) 

AO0(4n; x, y) 

AQT(4nj X) 

AUo(8n;x,y) 

AH)(4n;S,1) 

AH ) (4n + 2; X, I ) 

A( ) (4n; x,-1 ) 

A(2) (8n; x,-1) 
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Many of the factorizations in Theorem 4 were conjectured experimentally 
by David Robbins [30]; the formula for Au(2n; x, y) was conjectured by Cohn 
and Propp [6]. 

THEOREM 5. The generating functions in Theorem 4 have the following 
special values. 

Ao(2n) Av(2n + 1) 

A(2) (-3)n 
2 

3(j - i) + 2 
Auu(4n; 1, 1, 1) 2n(n-1) j-+ 2n + 

21j 

A(2) (4n;2, 1,1 2 2) II2nn2) 2(j-i)+ 
i,j<2n+l - ) 

2ti,21j 

A(2) (4n + 2;1) - Av(2n+1) 

AQ) (4n) A(n)2 

A(T) (4n;2) = 2n(n-1) 4(j- i) + 1 

~~QTV11 j-i+n 

A() (4n; 3) 3(2)A(n) 

A() (8n) = Av(2n+ 1)2 

A(2) (8n)= Auu(4n). 

(Other identities, for example that 

A(T(4n) = AHT(2n), 

are implied by combining Theorems 2, 3, 4, and 5, although such combinations 
do not always reflect the logic of the proofs.) 

We will analyze all of the classes ASMs in parallel with ordinary unre- 
stricted ASMs. Along the way we will correct an error in the 3-enumeration 
of ASMs in Reference 22 originally found by Robin Chapman. 

Acknowledgments. The present work began with the mistake found in 
Reference 22 by Robin Chapman and with the Tsuchiya determinant [37], 
which is the UASM case of Theorem 10 and which was brought to the author's 
attention by Jim Propp. We would like to thank Vladimir Korepin, Robin 
Chapman, and Jim Propp more generally for their attention to the author's 
work. We would also like to thank Christian Krattanthaler, Soichi Okada, and 
Paul Zinn-Justin for their interest and for finding mistakes in the first draft. 
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Finally we would like to acknowledge works by Bressoud [1], Bressoud and 
Propp [2], Robbins [31], and Zeilberger [38] for spurring the author's interest 
in alternating-sign matrices. 

Mathematical experiments in Maple [25] were essential at every stage of 
this work. This article is typeset using REVTeX 4 [29] and PSTricks [28]. 

2. Square ice 

If G is a tetravalent graph, an ice state (also called a six-vertex state) of 
G is an orientation of the edges such that two edges enter and leave every 
tetravalent vertex. In particular if G is locally a square grid, then the set of ice 
states is called square ice [24]. More generally G may also have some univalent 
vertices, which are called boundary, and restrictions on the orientations of the 
boundary edges are called boundary conditions. 

A A A A 

X4 , < 

X3 > < 

X2 > < 

X1 > < 
v w v w 

Y1 Y2 Y3 Y4 

Figure 4. Square ice with domain wall boundary. 

A w A v W 

1 -1 0 0 0 0 

Figure 5. Replacing square ice with alternating-sign entries. 

For example, a finite square region of square ice can have domain wall 
boundary, defined as in at the sides and out at the top and bottom, as in 
Figure 4. These boundary conditions were first considered by Korepin [18], 
[12], [19]. A square ice state on this region yields a matrix if we replace 
each vertex by a number according Figure 5. It is easy to check that this 
transformation is a bijection between square ice with domain wall boundary 
and alternating-sign matrices [22], [10]. 
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iX1 > > 

iX2 ' A A 

- 

^1 > 
y y 

Y1 Y2 

Figure 6. Square ice with M boundary. Figure 7. Square ice with HT boundary. 

t4,/< 

X1 > 

Xl X2 X3 X4 

F;gure 9. Square ice with QT boundary. 
Figure 8. Square ice with VH boundary. 

There are also easy bijections from ice states of the graphs in Figures 6- 

9 to the sets of VSASMs, VHSASMs, earen HTSASMs, and even QTSASMs. 

(The labels in these figures will be used later.) The dashed line in the QTSASM 

graph means that the orientation of an edge reverses as it crosses the line. The 

HTSASM and QTSASM graphs are obtained by quotienting the unrestricted 

ASM graph by the symmetry. The median of a 2n + 1 x 2n + 1 VSASM is 

always the same, so we can delete it and consider the alternating-sign patterns 

on the left half. The deleted median then produces the alternating boundary 

in 6. Likewise we can quarter a VHSASM by deleting both medians, which 

produces two alternating sides. 

ayl ay2 

X2 

X2 

X1 

X1 

X2 

X2 

X1 

X1 

| at2 

axl 

1 

Y1 Y1 Y2 Y2 

Figure 11. Square ice with UU boundary. Y1 Y2 

Figure 10. Square ice with U boundary. 
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x4 > 4 > 
X1 X2 X3 X4 

X3 > X4 

X2 > * X3 : , 

X1 > * X2 > e 

Figure 12. Square ice with 0 boundary Figure 13. Square ice with 00 boundary. 

ax, ax2 

x2 > 

X1 > 

x1 -> * 

Figure 14. Square ice with UO boundary. 

Finally the square ice grids corresponding to UASMs, UUASMs, OSASMs, 
OOSASMs, and UOSASMs are shown in Figures 10-14. The last three grids 
have right-angled divalent vertices; we require the orientations of a square ice 
state to either be both in or both out at these vertices. In contrast at the 
U-turn vertices one edge must point in and one must point out. 

3. Local concerns 

Throughout the article we assume the following abbreviations: 

x = x- 

C(x) x-x 

a(x) = u(ax)a(ax). 

(As we discuss below, a is a global parameter that need not appear as an 
explicit argument of ac.) 

We will consider a class of multiplicative weights for symmetric ASMs. 
By a multiplicative weight we mean that the weight of some object is the 
product of the weights of its parts. In statistical mechanics, multiplicative 
weights are called Boltzmann weights, and the total weight of all objects is 
called a partition function. Figure 15 shows the weights that we will use 
for the six possible states of a vertex. The figure also shows the weights for 
U-turns and corners that are labelled with a dot; bare edges and curves have 
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the trivial weight 1. The vertex weights are called an R-matrix and the U-turn 
and corner weights are called K-matrices. Vertex and U-turn weights depend 
on a parameter x (the spectral parameter) which may be different for different 
vertices or U-turns, so we will label sites by the value of x. The weights also 

depend on three parameters a, b, and c which will be the same for all elements 
of any single square ice grid, so these parameters do not appear as labels. 

a(a2) C(ax) c(ax) 

a(a2) a(ax) a(ax) 

)) ) 
a(bx) a(bx) 

a(cx) a(cx) 

-i=-^ b 

b b 

Figure 15. Weights for vertices and U-turns. 

We will use a graph with labelled vertices as a notation for its corre- 

sponding partition function. If the graph has unoriented boundary edges, then 
the partition function is also interpreted as a function of the orientations of 
the edges. On the other hand, our definitions imply that we sum over the 
orientations of internal edges. For example, the graph 

denotes the following function on the set of four orientations of the boundary: 

0 a(a2) -+ a(ax) a(a2) + Ca(ax) 0 

In this notation a vertex is not quite invariant under rotation by 90 de- 

grees, so the meaning of a label depends on the quadrant in which it appears. 

844 
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The following relation holds: 

x 

As a further abbreviation, if we label two lines of a graph that cross at an 
unlabelled vertex, the spectral parameter is set to their ratio: 

x = 

TlYllgs4, 

The labelled graphs in Figures 4, 6, 7, 9, 10, 11, 12, 13, and 14 then 
represent the partition functions 

Z(n;x,y) Z+ (n;x,yW) Zu(n;x',y) Zuu(n;',Y) 
ZQT(n; x) Zo(n; x) Zoo(n; x) Zuo(n; ax)n 

Here the vectors x and y have length n when both are present, and otherwise 
x has length 2n. In the HT and 00 cases there is a single extra parameter 
taken from the set {+, -}; if it is - then the spectral parameters in the upper 
half of the grid are negated. (Note that the index n is not defined in the same 
way as for the enumerators such as AHT(2n).) 

The key property of the R-matrix is that it satisfies the Yang-Baxter 
equation: 

LEMMA 6 (Yang-Baxter equation). If xyz = a, then 

Ky x 

x / /x y\ 

As usual the Yang-Baxter equation appears to be a massive coincidence. 
In our previous review of the Yang-Baxter equation [22], the R-matrix was 
normalized to have a particular symmetry: It was the matrix of an invariant 
tensor over the 2-dimensional representation of the quantum group Uq(s[(2)), 
with q related to our present parameter a. This symmetry reduced the coinci- 
dence in the equation to a single numerical equality. The spectral parameters 
were chosen to satisfy the equality. Here we normalize the R-matrix to reveal 
combinatorial symmetry rather than symmetry from quantum algebra. 

Proof. Taken literally, the equation consists of 64 numerical equalities, 
because there are 64 ways to orient the six boundary edges on each side. How- 
ever, both sides are zero unless three edges point in and three point out. This 
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leaves 20 nonzero equations. The equation also has three kinds of symmetry: 
The right side is the left side rotated by 180 degrees, all arrows may be re- 
versed, and both sides may be rotated by 120 degrees if the variables x, y, and 
z are cyclically permuted. By the three symmetries, 8 of the nonzero equations 
are tautological, and the other 12 are all equivalent. One of the 12 nontrivial 
equations is 

x Y X'( 

XY. Y fx yx 

In algebraic form, the equation is 

o(ay)(J(a2)a(ax) = a(az)cr(a2)2 + (ax) (ay) a(a2). 

Cancelling a factor of r(a2), expanding, and cancelling terms yields 

a2xy + a2xy = a3z - za - za + a z + a2xy + a2xy, 

which is implied by the condition xyz = a. LI 

We will need the reflection equation [3], [33], [7], an analogue of the Yang- 
Baxter equation that relates a K-matrix to the R-matrix. 

LEMMA 7 (Reflection equation). If st = ay and st = ax, then 

t 

Proof. The argument is similar to that for Lemma 6. Both sides are zero 
unless two boundary edges point in and two point out. There is a symmetry 
exchanging the two sides given by reflecting through a horizontal line and 
simultaneously reversing all arrows. (Note that the weights of a U-turn are 
not invariant under reflection alone.) Under this symmetry four of the six 
nonzero equations are tautological, and the other two are equivalent. One of 
these is: 

S - s 

t 
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Algebraically, the equation reads: 

a'(bt)o'(a2) (a(ay) a(bs) + ar(ax)ua(bs)) 
= U(bt)o'(a2)(o(ax)o'(bs) + uo(ay)ar(bs)). 

All terms of the equation match or cancel when st = ay and st = ax. 

The corner K-matrix also satisfies the reflection equation [7]. 

LEMMA 8. For any x and y, 

-=y 

Proof. Diagonal reflection exchanges the two sides. Both sides are zero if 
an odd number of boundary edges point inward. If two boundary edges point 
in and the other two point out, then arrow reversal is also a symmetry, because 
one corner must have inward arrows and the other outward arrows. These facts 
together imply that all cases of the equation are null or tautological. D 

Finally we will need an equation that, loosely speaking, inverts a U-turn: 

LEMMA 9 (Fish equation). For any a and x, 

iix3ax = a(a2x2) 3ba 

The proof is elementary. 

4. Determinants 

In this section we will establish determinant and Pfaffian formulas for the 
partition functions defined in Sections 2 and 3. Recall that the Pfaffian of an 
antisymmetric 2n x 2n matrix A is defined as 

PfA df E (-1)' H Al(2i-1),7r(2i) 
7eX i 

where X C S2n has one representative in each coset of the wreath product 
S2 I Sn. (Thus X admits a bijection with the set of perfect matchings of 

{17,..., 2n}.) Recall also that 

det A = (Pf A)2. 

847 



(a ) lli,j°l(XiSi) (detM) 
Ilinj C(XiXj)a(yiVi) 

c:r(a2)n [li,j ct(xiyV) (det M)(det M+T) 

Hi<j 5(Xixj ) 5(YiYj ) 

5(a2)n Ili 5(byi)ff(a2xi2) lli j oe(xiy-j)ol(xiyj) 

- ni<j(XiXj)ff(YiYj) ni<i C(xiXj)a(yivi) 
*(det MU) 

5(a2)n Ilt, (T(a2xi2)ff(a2yi2) rli j 0g(Xiyj)20l(XiVi)2 

fIi<j <T(XiXj)25(YiYj)2 fliaj 5(xixj)25(Wiyj)2 

(det Mu)(det MUU) 

848 GREG KUPERBERG 

THEOREM 10. Let 

M(n; x, y)i,j = 

MHT (n; X, Y)i,; 

Mu(n; x, y)i,; = 

(XiYj ) 

1 1 

5(axit) <T(aXiyj) 

1 _ 1 

oe(xiyj ) 0t(XiYj) 

5(byj)ff(cxi) _ 
- 5(axiyj) 

5(byj)ff(cxi) 
C(aXiy,7 ) 

N 

Muu n; x, y)i,j 

5(byj)ff(cxi) + (J(byj)ff(CXi) 

cr(aziY;) 5(aziY;) 

-k k 
C(Xi Xj ) 

Ot(X ) 

5(X ) 

a(Sizj ) 
MO(n; 

X)i,; 

( - ) ( C2 

v(axix; ) 
Moo(n; X)i,j 

+ 5(axixj)J 

C(xixj)a(xizj) (otf x *) ot(xzx 0) ) 
xt g t J 

Mf ) (n; X)t,j 

K C(CXi)ff(CXj) 
(xixj)ff(XiXj) t (7(azixy) 

C(CXi)ff(CXj) 
- \ 

a axixj ) 

M(2) (n; *)i,j 

5(CXi)ff(CXj) + 5(CXi)ff(CXj) 

v(axixj ) (azixi ) 
Then 

ZHT (n; x, y) 

Zu(n;x7y) 

Zuu(n;x,y) 
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ZQT(n; x) C(a ) 5(a) Hi<j<2n Ot(XiX7) 

. (Pf M(1) ) (Pf M(2) ) 

ZO(n;z) = cr(a )7lIlz<X<2n(ztxi)(pfM ) 

LIi<j<2n 5(XiX7)2 

b2nC(a2)nC(a)2n Hi<2 (T(a2z2) 
Zuo(n; x) = ni<j<2n (XiXj)2 fIi<)<2n cr(x?xj)2 

tI 0t(XiXi)20E(zixj)2(Pf M(1) )(Pf M(2) ) 
i<j<2n 

We call the first four partition functions the determinant partition f?lnc- 
tions and the other four the Pfagan partition functions. 

Remark. The partition function Zu(n; x, y), the Tsuchiya determinant, is 
nearly invariant if x is exchanged with y*. Similarly Zo(n; x) is nearly invariant 
if each xi is replaced with xi. We have no direct explanation for these symme- 
tries. Note that the first symmetry is less apparent in Tsuchiya's matrix M 
[37, eq. (42)], which has an asymmetric factor 

F . _ sinh ((_ + Aj ) + sinh ((_-Aj ) 
tJ sinh(Aj + zi) sinh()ij-gi) 

In this expression wi, Aj, and (_ are obtained from xM, yj, and b by reparametriza- 
tion. If we factor this expression, 

F _ sinh ( 2 >j ) sinh ( (_-wi ) 
tJ sinh(Aj + gi) sinh(Aj-'i) 

we can then pull the asymmetric factors out of the determinant since they 
each depend on only one of the two indices i and j. This also explains why 
the K-matrix parameter (_ or b need not appear in the matrix Mu. 

The proof of Theorem 10 uses recurrence relations that determine both 
sides. The relations are expressed in Lemmas 11, 12, 13, and 14. Indeed, the 
first three of these lemmas are ob+rious for the right-hand sides of Theorem 10; 
only Lemma 14 needs to be argued for both sides. 

LEMMA 11 (Baxter, Sklyanin). Each of the partition functions in Theo- 
rem 10 is symrnetric in the coordinates of x. Each determinant partition func- 
tion is symrnetric in the coordinates of y. The partition functions Zu(n; x, ) 
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andZuu(n;x,y) gain afactorof(T(a2xi2)/ff(a2xi2) if xi is replaced byti for 

a single i. Similarly Zuu(n;xvy*) gains 5(a2yi2)/a(a2yi2) under Yi * > Yi and 

Zuo(n; x) gains v(a2xi2)/cJ(a2xi2) ?lnder xi | > xi . 

Proof. Invariance of Z(n; x, y) is an illustrative case. We exchange xi with 

xi+l for any i < n-1 by crossing the corresponding lines at the left side. If 

the spectral parameter of the crossing is z = axixi+l, we can move it to the 

right side using the Yang-Baxter equation (Lemma 6) and then remove it: 

Xi+l > < 

a(az) 
Xi > < 

Xi+t D< = 

= i,,,- 
Xi+l < 

Xi > 

Xi+l > 

X' > - < 

= (T(az) 
Xi+l > - < 

The argument for symmetry in x is exactly the same for all of the square ice 

grids without U-turns. If the grid has diagonal boundary with corner vertices, 

we can bounce the crossing off of it using Lemma 8. 
If the grid has U-turn boundary on the right, we exchange xi with xi+l by 

crossing the xi line over the two lines above it. We let the spectral parameters of 

these two crossings be z = axixi+l and w = axixi+l. We move both crossings 

to the right using the Yang-Baxter equation, then we bounce them off of the 

U-turns using the reflection equation (Lemma 7): 

X-i -' Xf+l ->- z < axi+ 

Xi+l > 
... tuXi 

Xi > - 

Xi > v SaXi 

Xi+l > z 

= - wx 

Xi+l > 

> t 3 aXi+l 
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Also if the grid has a U-turn on the right, we establish covariance under xi | > xi 
by switching the lines with these two labels and eating the crossing using the 
fish equation (Lemma 9). 

The same arguments establish symmetry in the coordinates of y. All of the 
arguments used in combination establish the claimed properties of Zuo(n;x). 

* C1 

LEMMA 12. The partition function ZHT(n; x, y) gatns Gl, factor of (il)n 
if xi and Yi are replaced by xi and yq for all i stmultaneously. Similarly 

Zoo^+(n; x) is invariant under xi xi and b | > c b. 

Proof. In both cases, the symmetry is effected by reflecting the square ice 
grid or the alternating-sign matrices through a horizontal line. g 

Foravectorx=(xl,...,xn),letx@'=(x2,...,xn). 

LEMMA 13. If x1 = ay1, then 

Z(n-1; x', y') C(a ) II cr(axipl)ln(axlyi) 

ZHT (n i X v 8 ) + 0J (a2 ) 2 H 5 (aXi yl ) 2 Cr (aS l pi ) 2 

Z (n; x y) cr(a2)5 (a2xl2)cr(byl ) 

[-2ex] * H a (axiSl )ff(aXl yi)(J(axI yl )ff(axl Yi) 

2<i 

ZUU(n; x, Y? = l7(a2)25(a2x2)a(a2y2)ff(byl)ff(cX1) 

[-2ex] II 5(axiYl )2a(axlyi)2 
2<i 

H (aziyl)2cr(axlU-i)2* 
2<z 

If x2=ax1, then 

Z Q( T( ;1 )S,) = a(a)2(J(a2)2 II (J(aXizl)25(aXiz2)2- 

If x2=axl,then 

, HX 

Zotn; Z) = v(a2) II cr(axlXi)ff(az2xi) 
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Zoo (n; x) c2c(a2)2 fJ 
(axlxi)2c (ax2x )2 

Zoo(n - 1; ) 3<i<2n 

Zuo (n-1; 7") bV(a)2a (a2) (a x2 )(a X2) 

*o(Cxl)cr(cx2) 11 c(axlx )2(o(ax2x.)2 
3<i<2n 

1 (axli)2r(ax2xi)2. 
3<i<2n 

Proof. This lemma is clearer in the alternating-sign matrix model than it 
is in the square ice model. The partition function Z(n; x, y) is a sum over n x n 

alternating-sign matrices in which each entry of the matrix has a multiplicative 
weight. When Yl = axl, the weight of a 0 in the southwest corner is 0. 
Consequently this corner is forced to be 1 and the left column and bottom row 
are forced to be 0, as in Figure 16. The sum reduces to one over (n-1) x (n- 1) 
ASMs. The only discrepancy between Z(n; x, y)ly =ax, and Z(n - 1; 7', ) is 
the weights of the forced entries, which the lemma lists as factors. 

0 + 0 - + 

0 + 0 0 0 0 + 0 0 

Figure 16. ASM entries forced by yl = ax1. 

The argument in the other determinant cases is identical. The argument 
in the Pfaffian cases is only slightly different: All QTSASMs have zeroes in 
the corners, and the specialization x2 = axl instead forces a 1 next to each 
corner and zeroes the first two rows and columns from each edge. Likewise 
the specialization x2 = axl forces a 1 next to each corner of an OSASM or an 
OOSASM and a 1 in the third row entry bottom of a UOSASM, and several 
rows and columns of zeroes in each of these cases. D-1 

Define the width of a Laurent polynomial to be the difference in degree 
between the leading and trailing terms. (For example, q3 - q-2 has width 5.) 

LEMMA 14. Both sides of each equation of Theorem 10 are Laurent 
polynomials in each coordinate of x (and y in the determinant cases) and their 
widths in xl (yl in the determinant cases) are as given in Table 1. 

852 
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To conclude the proof of Theorem 10, we claim that Lemmas 11, 12) 
and 13 inductively determine both sides by Lagrange interpolation. (To begin 
the induction each partition function is set to 1 when n = O.) If a Laurent 
polynomial of width w has prespecified leading and trailing exponents, it is 
determined by w + 1 of its values. Each of our partition functions is a centered 
Laurent polynomial in x1 (in the Pfaffian cases) or Y1 (in the determinant 
cases). Moreover each is either an even function or an odd function. Thus we 
only need w + 1 specializations, where w is the width in x2 (or y2). 

These widths are summarized in Table 1. To compute them, observe that 
each O entry in the bottom row of an ASM contributes 1 to the width. In the 
UASM and UUASM cases, it is the bottom two rows, and the U-turn itself 
contributes 1 to the width as well. In the QTSASM case, the corner entries 
always have weight v(a) and do not contribute to the width. Lemmas 11 and 
13 together provide many specializations which are listed in Table 1. Note 
that Lemma 11 impliesthat (X(a2xl) divides Zuu(n;xvy*) Zuo(n;x:vy): which 
provides an extra specialization in these two cases. In conclusion, it is easy to 
check that there are enough specializations to match the widths. 

Function Width Specializations 
Z(n;x,Y) n-1 Y1 = ax 

ZHT(n;X78) 2n-1 Y1-ailx 
Zu(n; x, y) 2n-1 Y1 = axiil 

Zuu(n;xvy) 4n Y1 = ai1xi1, a 
ZQT(n; X) 4n-3 x1 = ai1x 
ZO(n; x) 2n-2 xl = ax 

Zoo(n; x) 4n-3 x1 = ai1xi 
Zuo(n; x ) 8n-4 x1 = a+1xiil, a 

Table 1. Widths and specializations of partition functions. 

RemarAc. The formulas in Theorem 10 are even more special than Lem- 
mas 11 through 14 suggest. Among the evidence for this, the recurrence re- 
lations still hold with only slight modifications if all spectral parameters in 
the QT, UU, and UO grids are multiplied by an extra parameter z. Similarly 
the spectral parameters in the top halves of the HT and 00 grids may be 
multiplied by an arbitrary z instead of by i1. However, we were not able to 
generalize Theorem 10 to include this parameter. 

Lemma 13 reveals another subtlety, namely that 

ZHT(ni X, 8) _ t Z(n; ac y) 8 2 
Z+T(n - 1; X', S) V Z(n - l; ac', i') J 
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at every specialization Yi = a1+xj. Since this coincidence holds for enough 
specializations to determine ZT (n; x, y) entirely, one might suppose that 

ZHT(n; x,) = Z(n; , Y)2 

But then Z+ (n; x, y) would be an even function of yl, while in reality it is an 
odd function. The other symmetry classes involving half-turn rotation have 
similar behavior. 

5. Factor exhaustion 

In this section we derive several round determinants and Pfaffians depend- 
ing on two and three parameters. We will later identify special cases of the 
determinants and Pfaffians with those appearing in Theorem 10, and they will 
specialize further to establish the enumerations in Theorems 2, 3, and 5. 

Since the formulas in this section may seem complicated, we recommend 
verifying that they are round without worrying about their exact form in the 
first reading. For this purpose we give a more precise definition of roundness 
that also applies to polynomials. A term Rn in a sequence of rational polyno- 
mials depending on one or more variables is round if it is a ratio of products of 
constants, monomials, and differences of two monic terms. All exponents and 
constant factors should grow polynomially in n or be independent of n. For 
example, n!3'(q + pn) is round and Gaussian binomial coefficients are round. 
Note that a round polynomial in a single variable must be a product of cy- 
clotomic polynomials, which is part of the motivation for the term "round". 
Roundness is preserved when a variable is set to 1 or to a product of other 
variables. In a later reading one can verify the explicit formulas. This is a 
tedious but elementary computation, because all round expressions involved 
have an explicit and regular form. As a warmup the reader can verify that the 
expressions for A(n) in Theorems 1 and 2 coincide. 

We begin with the classic Cauchy double alternant and a Pfaffian gen- 
eralization found independently by Stembridge and by Laksov, Lascoux, and 
Thorup [16], [35], [23], [36]. 

THEOREM 15 (Cauchy, S. L. L. T.). Let 

- 1 
xi + yj 

C2 (X,)ij = 1 
- 

For i +yj 1 + xiy2n let 
For I < i, j < 2n, let 

C3Xi + xj 

Co~ 1Xj -- Xi 

1 - xixj 

854 
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Then 

li<j(Xj -- Xi)(yj - 
yi) det CI -- 

Iei 
H r<j(I 

- 
xixj)(1 

- 
yiyj)(Xj 

- 
Xi)(yj 

- yi) 

Hi,j (xi + yj)(1 + XiYj) 

*n(1 + Xi)(I + Yi) 

Pf C3 = ti 
- 7 j 

i<j<2n 
xi T xj 

Pfc4 = nI 1 
- 
zj' 

i<j<2n 

Proof. Our proof is by the factor exhaustion method [20]. The determi- 
nant det Ci is divisible by xj - Xi because when xi = xj, two rows of C1 are 
proportional. Likewise it is also divisible by yj - yi. At the same time, the 
polynomial 

I(xi + y) (det C1) 
i,j 

has degree n2 - n, so it has no room for other nonconstant factors. This 
determines det C1 up to a constant, which can be found inductively by setting 
Xi = -Yi. 

The determinant det C2 is argued the same way. The Pfaffians Pf C3 and 
Pf C4 are also argued the same way; here the constant factor can be found by 
setting xl =- 2. D 

Next we evaluate four determinants in the variables p and q. We use two 
more functions similar to a and a from Section 4: 

-y(q) = ql/2 _ q-1/2 T(q) _ q/2 + q-1/2 

THEOREM 16. Let 

,_ +(qn+j-i) 
T1 (p, q)i,j = (pn+j-i) 

T2(p, q)i,j = 
T(qJ`) 

(qn++i) (qn+j-i) 
T3(p, q)i,j - (pn+j+i) -(pn+ji) 

T(qj+i) T(qj-i) 
T4(p, q)i,j =- T(qj ) 

T(p-) 
T(pJ+i) T(pj-i)' 

855 



856 GREG KUPERBERG 

Then 

det T1 = rli7&j 7(P ) Hi, ey(qpj- 
1 Ii,j tY(P +S ) 

2 rt t+j ty(pJ i)2 H i j ry(qpi-i) 

det T2 = (-1 ) ( 2 ) rii j T (pJ-t ) 

ni<j<2n t/(pi i) II i,j<2n+1 7(qp-i) 
det T3 = ni,j ry(pn+j i)7(pn+j+i) 

2 rli<junty(p (j i))2 rI i,j<2n+1 ty(qpi-i) 
det T4 = Hi,j T (pi i ) T (py +i ) 

Proof. Factor exhaustion. We first view each determinant as a fractional 
Laurent polynomial in q. By choosing special values of q, we will find enough 
factors in each determinant to account for their entire width, thus determining 
them up to a rational factor R(p). (Each determinant is a centered Laurent 
polynomial in q with fractional exponents. The notion of width make sense for 
these.) We will derive this factor by a separate method. 

For exarnple, if O < k < n, then det T1 is divisible by 7(qp-k)nk because 

Tl(p,P)i,j = E pt(n+j-i) 

l-k<.e<k-l 

Evidently Tl(p,pk) is a sum of k rank 1 matrices at this specialization, so its 
determinant has an (n-k)-fold root at q = p. Likewise T(p,p-k) also has 
rank Zz and (qp)n- also divides det T1. All four of the determinants have 
this behavior. In each case, the singular values of q can be read from the 
product formulas for the determinants. The only detail that changes is the 
form of each rank 1 term, which is summarized in Table 2. 

Matrix Rank 1 terms Extra q value 
T1 p-tipE(n+j) 

T2 p-tiptj 1 

T3 (p-ti _ pti)(pt(n+j) _ p-t(n+j)) oO 

T4 (pti _ pti)(ptj _ p-t)) 0 

Table 2. Details of factor exhaustion for Theorem 16. 

Finally the q-independent factor R(p) can be found by examining the 

coefficient of the leading power of q, or equivalently) taking the limit q oo. 

For example 

Tl(p, q)i,j 1 _ (n+i+j)/2C(x ) 

q(rt+j-i)/2 7(pn+j-i) P : Y 
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as q ) oo with 
Xi-p-i yj = pn+; 

In this case R(p) is given by det C1 in Theorem 15. This happens in each case, 
although for the matrix T2 it is slightly more convenient to specialize to q = 1. 
The best extra value of q in all four cases is given in Table 2. 0 

Finally we evaluate two three-variable Pfafflans which are like the deter- 
minants in Theorem 16. 

THEOREM 17. For i, j < 2n, let 

ty(qj-l )ty(rS0-i) 

T6(P, , r)i j = a(pi+i)a(pi-i) (ry(q2+ ) _ ty(qj i) ) 

t7(ri+i) a(rj-i) A 

ta(pjoi) - a(pj-i) ) . 
when i 7& j and 

Ts(p, q, r)i,i = ° 
T6(p, q, r)i,i - °* 

Then 

Pf T5 = rli<j Y(Pi i )4 t|i,j 7(qpi-t)ty(rpi-i) 

rlij <2n tY (Pi ) rl i ,j <2n+ 1 ry (qpj-i ) ey (rpj-i ) 
Pf T6 = 12 

Proof. Factor exhaustion in both q and r. If O < k < n, then 

T5(papk7 r)i,l} = E rl/2pt(j-i) _ E r-l/2pt(S-i) 

1-k <t k-1 1-k <t< k-1 

is, as written, a sum of 2k rank 1 matrices. Therefore the Pfaffian, whose 
square is the determinant, is divisible by 7(qp-k)n-k. The same argument 
applies to Ts(p, p-k, r). It also applies to Ts(p, q, pi) since Ts is symmetric in 
q and r. 

This determines PfTs up to a factor R(p) depending only on p. This 

factor can be determined by taking the limit r oo: r1m (li-n- |+l.1-n- l ^)/2 = t -T1 (p, q) a,i-n 7 < n < t 
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In other words, after rescaling rows and columns, T5(p, q, r) has a block matrix 
limit: 

lim r'Ts(p, q, r) - T1 (p, q) 

(The bullet * is the exponent above that is different for different rows and 

columns.) This establishes that the leading coefficient of PfT5(p,q,r) as a 
polynomial in r is 

(-1)(2) det Ti(p, q), 

which in turn determines R(p). 
The Pfaffian Pf T6 is argued the same way. To find the factor R(p) which 

is independent of q and r, we take the limit r, q - oo. In this limit Pf T6 
reduces to a special case of Pf C4 in Theorem 15. C 

Remark. Several other specializations of the determinants in Theorem 16 
and the Pfaffian in Theorem 17 are special cases of Theorem 15 and other 
determinants and Pfaffians such as these [20]: 

det {x -1 det {y7(x 1)}. 

For example, T1 (q2, q) is also a Cauchy double alternant, while T1 (p, pn) is the 
product of two (rescaled) Vandermonde matrices. Any of these intersections 
may be used to determine the q-independent factor in the factor exhaustion 
method. There are also other round determinants like the ones in Theorem 16 
which we do not need, for example 

det { "(qn+j-i (qn+j+i- 
1 

} 
e 

(pn+j-i) -/(pn+j+i-l) 

These examples suggest the following more general problem: Let M be an n x n 
matrix such that Mij is a rational polynomial in a fixed number of variables, 
such as p, q, and r, and in exponentials of them such as pt, q3, and rn. When 
is det M round? What if Mij is a rational polynomial in variables such as xi 
and yj? 

6. Enumerations and divisibilities 

In this section we relate the quantities appearing in the other sections to 
prove the results in Section 1. 

Let 

1 = (1,1,1,1,...,1) 

x = a2+2+a2 

y = (ba)/ar(ba) 
z = cr(ca)/a(ca). 

858 



ALTERNATING-SIGN MATRICES 

Then most of the generating functions in Section 1 can be expressed in terms 
of the partition functions in Section 4, 

A(n; x) 

AHT(2n; x, i1) 

Au(2n; x, y) 

Auu(4n; x, y, z) 

AQT(4n; x) 

Ao(2n; x) 

Auo(8n; x,z) 

Z(n; 11) 

-(a)n2 -n(a2)n 

Z (n; 1, i) 
- (a)2n2-o(a2)n 

Zu(n; 1, 1) 

7(a)2n2 -(a2)n(b6)n 

Zuu(n; 1, 1) 

a(a)4n2 -n(2)nU(ba)n(c)C 

ZQT(n; 1) 
(a)4n2-n(a2)n 

Zo(n; 1) 
-(a)2n2-2n2r(a2)n 

Zuo(n; 1, 1) 
T(a)8n2-3nTh(a2)nf(ca)nb2n' 

by the definition of the partition functions and the correspondence between 
square ice and alternating-sign matrices. The generating function Aoo(4n; x, y) 
requires a slightly different change of parameters: if y = b2/c2, then 

Zoo(n; t) 
Aoo(4n; x, y) = 3 

1 

o(a)4n2 3noJ(a2)nc2n' 

The generating function Au(n; x, y) is a polynomial of degree n in y and it is 
easy to show that the leading and trailing coefficients count VSASMs, so we 
can say that 

Av(2n + 1; x) = Au(n; x, 0) = Au(n; x, oo), 

where by abuse of notation, if P(x) is a polynomial (or a rational function), 
P(oo) denotes the top-degree coefficient. Likewise Auu(n; x, y, z) has bidegree 
(n, n) in y and z and the corner coefficients count VHSASMs and VHPASMs: 

AVHp(4n + 2; x) = Auu(n; x, 0, oo) = Auu(n; x, oo, 0) 

AvH(4n + 1; x) = Auu(n; x, oo, 0) 

AvH(4n + 3; x) = Auu(n;x, 0,0). 

We can reverse these relations by defining 

(1) (n; x, ) 

z(2u (n; x, y) 

Hli,j a(xiyj )(det MHT) 

fli<j U(XiXj)u(yiYj) 

H ii,j a (XiYj)oa(xiYj) (det Muu) 

-i<j U(xiXj)}r(yigj) -i<j a(xiXj)u(yiYj) 

859 
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llij<2n ot(xixj)(Pf M(k)') 

lli<j<2n 5(XiXj) 

Hi<j<2n (xixj)(pf Moo) 
Ili<j<2n 5(XiXj) 

[Ii<j<2n ot(Xixj)ot(xixj)(pf Mt 1) 
lli<j<2n (T(XiXj) rii<j<2n (r(Sixj) 

ZQT(n; X) 

Z(2) (n; X) 

Z(k) (n; X) 

and 

A( ) (2n; x, i:1) 

A(2) (4n; x, y, z) 

A(k) (4n; x) 

A(2) (4n; x, y) 

A(lt(8n; x, z) 

A(2) (8n; x, z) 

C(a) ZHT (2n; 1, 1) 
5(a)n-2n25(ba)-n5(ca)-nz(2) (4n; 1 l) 

= cr(a)n-2n Z(k) (4n; 1) 

= C_2n(T(a)2n_2n2Z(2b(4n; 1) 

- ff (a) Zuo (8n ; 1, 1 ) 

= 5(a)n- 4n v(ca)-nz(2) (8 1 1) 

using the same correspondence between a, b, and c with x, y, and z (which 
slightly differs in the case of OOSASMs). The observation that all of these 
quantities must be polynomials establishes the factorizations of AHT, AOO, 
AQT, AUU, and Auo in Theorem 4. 

For vectors x and y, let 

(z) S) - (z1, . v Xn) Y1) * : Yn) 

denote their concatenation, and let exponentiation of vectors denote coordinate- 
wise exponentiation: 

Xk = (Xk, Xk, . . ., Xk ). 

Then the matrices 

M(2n;(x,x-l) (y y 1)) 

M (2 ( -1) ( 1)) 

commute with the permutation matrix 

K O In 8 

V In ° J ' 

where In is the n x n identity matrix. Similarly the matrices 

M(2 + 1 ( 0 1 -1) ( 0 1 0 1)) 

MXT(2n + 1; (X, 1, X-1)) (Y, 1, Y 1)) 
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commute with 
0 0 In 

P=- 0 1 0 . 

In 0 0 

If x has length 2n and b2 = -c2, then 

Moo(4n; (X, X-l)) 

commutes with 

p_ K O 2nA 
V I2n 0 ) 

In each case we can decompose M, MHT, and Moo into blocks corresponding to 
the eigenspaces of P. The block with eigenvalue -1 is in the three cases equal 
to Mu and proportional to Muu (with b = c = i) and M(1). This results in Uo 
the factorizations of A(n; x), A(2) (n; x, 1), and A(2) (4n; x, -1) in Theorem 4. 

Another factorization in Theorem 4 is that of A (2n; x,-1). To establish 

this, observe that the matrix MHT(2n; x,x) is antisymmetric, and that it is 

proportional to M(1) (2n; x). The latter matrix is employed for its Pfaffian, 
while the former for its determinant, which is the square of the Pfaffian. 

The final case of Theorem 4 is the relation between Av(2n + 1; x) and 

Au(2n; x). This relation is established by observing that b appears only in the 
normalization factor for Zu (n;x) and not in the matrix Mu (n;x); the only 
step is to change variables from b to y. 

Finally we establish the round enumerations in Theorems 2, 3, and 5. 
We review the argument from Reference 22 for A(n), which is an illustrative 
case. Let w:n - exp(7ri/n), where i2 = -1. Equation ?? implies the following 
correspondence between x and a: 

a- = 3 = x = 1, 

a= 4 = x = 2, 
a=w6 => x=3. 

For any of these values of x or a, we would like to evaluate the partition 
function Z(n; 1, 1) to find A(n; x) by equation ??. Unfortunately the matrix 

M(n; 1,1) is singular. So instead we will find its determinant along a curve of 
parameters that includes (1, 1). More precisely, let 

q(k) = (q(k+1l)/2 q(k+2)/2, q(k+n)/2) 

and 

g= g(0). 

Then 
lim q(k) = 1, 
q-+l 
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and if we assume equation ??, 

M(n; 4(O), q(k)) - 1 

-qk+j-i + x - 2 - qi-j-k' 

If we further set x = 1 and k = n, then 

M(n; q(O), 4(n)) -T1 (q3, q) 

has a round determinant by Theorem 16. Computing A(n; x) is then a routine 
but tedious simplification of round products. The argument for most of the 
other enumerations is the same, except that the curve of parameters is (q, q(n)) 
for 1-enumeration in the determinant cases, (q', q for 2- and 3-enumeration in 
the determinant cases, and q'in the Pfaffian cases. Each of the matrices is then 

proportional to some matrix Ti from Theorem 16 or 17. The determinants 
and Pfaffian for three of the 2-enumerations are round without specializing 
the parameters and instead reduce to a matrix Ci from Theorem 15. These 
variations of the argument are summarized in Table 3. 

Enumeration 

A(n; 1) 
A(n; 2) 
A(n; 3) 
AHT(2n; 1, 1) 
AHT(2n; 2, 1) 
Av(2n + 1; 1) 
Av(2n + 1; 2) 
Av(2n + 1; 3) 
A(2) (4n; 1 ,1, 1) 
A(2) (4n; 2, 1, 1) 

A2) (4n; 1) 

AQ (43) 

AQ)T(4n; 1) AQ')T(4n; 2) 

AT) (4n; 2) 
Ao(2n; 1) 
A() (8n; 1) 

Au2(8n; 1, 1) 

Parameters 
a = -3 

a = )4 
a = W6 
a = W3 
a = W4 

a = W3 
a = W4 
a = W6 

a = W3, b = c = W4 

a = b = c = W4 

a= b = 3, c a 

a = W3 

a = W4 

a = W6 

a = ;3 

a = W4 

a = W3 

a -= 3, c = W4 

a -= 3,c = W4 

Section 4 
M(, q(n)) 
M(x,y) 
M(q, ) 

MHT q,(n)) 
MHT(q,) 

Mu(q, q(n)) 
Mu(x, y) 
Mu(q, q 

Muu(q, (n)) 

Muu(q, ) 

Muu(q q(n)) 

M() (q) 

M(1 (q) 

M {T(q) 

Mo (q 
M(2) (q) 

Mu (q) 

Section 5 
T1 (q3, q) 
C1(/2, pQ2) 

T2 (q3, q) 
Ti(q3, q2) 
T2(q2, q) 
T3(q3, q) 
C2(x2, F2) 
T4(q3 q) 

T3(q3, q2) 

T4(q2 q) 
T3a(q3 q) 

T5 (q3 q, q) 

T5(q4, q2 q) 

T5(q6, q3, q2) 

T5(q3, q2 q) 

C3(x2) 

T6(q3, q, oc) 
T6(q3 q, q) 

T6(q3, q2, q) 

Table 3. Specializations of partition function determinants and Pfaffians. 
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7. Discussion 

Even though each section of this article considers many types of alternating- 
sign matrices or determinants in parallel, the work of enumerating symmetry 
classes of ASMs is far from finished. Robbins [30] conjectures formulas for 
the number of VHSASMs and for the number of odd-order HTSASMs, QT- 
SASMs, and DASASMs in addition to the enumerations that we have proven. 
Theorem 10 yields a determinant formula for the number of VHSASMs, ob- 
tained from the more general partition function Zuu(n; x, y*) by setting a = w2 
and b- c = i2, and all other parameters to 1). In the enumeration of 
4n + 1 x 4n + 1 VHSASMs, where b = c = 2, experiments indicate that 

detMuu(q(-2),q(n-2)) 

is round, but we cannot prove this. In the other case7 4n+3 x 4n+3 VHSASMs, 
where b e C-W-2, we could not even find a curve for which the determinant 
is round. This strange behavior of VHSASMs is one illustration that although 
we have put many classes of ASMs under one roof, the house is not completely 
in order. 

For the other three classes conjecturally enumerated by Robbins, we could 
not even find a determinant formula. Nonetheless we conjecture: 

QUESTION 18. Can DSASMs, DASASMs, TSASMs, and odd-order HT- 
SASMs and QTSASMs be x- enurnerated in polynomial time? 

The polynomials listed in Table 4 appear to be generating functions of 
some type, but in most cases there is not even a proof that their coefficients 
are nonnegative. (We have more data than is shown in the table; the multivari- 
ate polynomials A(2) (4n; x, y, z), A(28(4n; x, y), and A(2) (4n; x, y) also appear 
to be nonnegative.) Some of them are conjecturally related to cyclically sym- 
metric plane partitions [30]. Indeed they are related to each other in strange 
ways. For example Theorem 5 establishes that if we take x = 1, three of the 
polynomial series (Av, Ao, and A(2)p) become e.qual, as if to suggest that 
VSASMs can be x-enumerated in three diSerent ways! 

QUESTION 19. Do the polynomials in Table 4 x-enumerate classes of 
alternating-sign matrices? 

OSASMs include the set of off-diagonal permutation matricesv which can 
be interpreted as the index set for the usual combinatorial formula for the 
Pfaffian. Like ASMs, their number is round. These observations, together 
with the known formulas due to Mills, Robbins, and Rumsey [26] motivate the 
following question: 
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Factor 
Av(2n + 1; x) 
Av (2n; x) 
A(1) (4n; x) 
A(2) (4n; x) 
A(2) (4n; x, 1,1) 

A(2) (4n; Sc) 
AV2) p(4n + 2; x) 
Ao (2n; x) 
Ao2o (4n; x, 1) 

Y? AUo (8n; ) 
A(20 (8n; , 1) 

- 1 n=2 
x + 2 
x + 6 
x + 3 

6x + 4 
4 X3 + 9z2 + 40x + 16 

x + 1 

2x + 1 
3 

n-3 
z3 +6z2 + 13z+6 
x3 + 12z2 + 70x + 60 
z3 + 8z2 + 25z + 15 

20x3 + 60x2 + 52x + 8 

z6 + 1 6x5 + 125x4 + 629x3 + 1036z2 + 560x + 64 
z3 +4z2 +5z+ 
5x3 + 12z2 + 8x + 1 
z2 + lOx + 15 
2x3 + 20x2 + 28x + 8 
z6 + 14x5 + 82x4 + 210x3 + 239z2 + 115x + 15 
2x6 + 42x5 + 420x4 + 1680x3 + 2892z2 + 2040x + 360 
x9 + 24z8 + 275x7 + 1966z6 + 8215x5 + 19144x4 
+21777x3 + 10028z2 + 1712x + 64 

4 

n= 

1 

1 

1 

l 

1 

1 

2 
1 

2 
X + 

2x + 4 
r2 + 5x + 3 
2x2 + 20x + 20 
x4 + 12x3 + 65z2 + 104x + 16 

Table 4. Irreducible x-enumerations. 

QUESTION 20. Are there formulas for the Pfaffan of a rnatrzx involving 
OSASMs that generalize the determinant formtblas involving ASMs? 

Neither any of the enumerations that we establish, nor the various equinu- 
merations that they imply, have known bijective proofs. Nor is it even known 
that two equinumerous types of ASMs index bases of the same vector space. 
For example, can one find an explicit isomorphism between the vector space of 
formal linear combinations of 2n x 2n OSASMs and the vector space of formal 
linear combinations of 2n + 1 x 2n + 1 VSASMs? 

Sogo found that Z(n; 1, 1) satisfies the Toda chain (or Toda molecule) 
differential hierarchy [34], [17]. 

QUESTION 21. If x and y are set to 1, do the partition f?lnctions in 
Theorern 10 and Table 4 satisfy natural difXerential hierarchies? 

Many other solutions to the Yang-Baxter equation are known [8]. The 
six-vertex solution corresponds to the Lie algebra 51(2) together with its 2- 
dimensional representation; there are solutions for other simple Lie algebras 
and their representations. 

QUESTION 22. Do square ice cl,nd Izeryin-Korepin-type determinants gen- 
eralize to other solutions of the Yang-Baxter eq?ation? 

Although our simultaneous treatment of several classes of ASMs is not es- 
pecially short, the argument for any one alone is relatively simple. We speculate 
that the methods of Lagrange interpolation (used in 04) and factor exhaustion 
(the topic of 05) simplify many proofs of product formulas. I. J. Good's short 
proof of Dyson's conjecture [11] also uses Lagrange interpolation. 

UNIVERSITY OF CALIFORNIA, DAVIS, CA 
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