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The sphere packing problem

How densely can we pack identical spheres into space?

Not allowed to overlap (but can be tangent).

Density = fraction of space filled by the spheres.



One-dimensional sphere packing is boring. (density = 1, trivial)

Two-dimensional sphere packing is prettier and more interesting:

(density = π/
√
12 ≈ 90.69%, Thue 1892)

The three-dimensional case strains human ability to prove:

(density = π/
√
18 ≈ 74.04%, Hales 1998, Hales et al. 2014)

What about higher dimensions?



Sphere packing in Rn

Solved for only two cases with n > 3. Viazovska’s breakthrough:

Theorem (Viazovska 2017).
The E8 root lattice achieves the greatest
possible sphere packing density in R8,
namely π4/384 ≈ 25.37%.

Twenty-four dimensions builds on her techniques:

Theorem (Cohn, Kumar, Miller, Radchenko, and Viazovska 2017).
The Leech lattice Λ24 achieves the greatest possible sphere packing
density in R24, namely π12/12! ≈ 0.1930%.

What’s so special about these dimensions? How can we
understand 8 dimensions without understanding 4 through 7?



Why should we care about sphere packing?

Natural geometric problem in its own right.

Toy model for granular materials.

Error-correcting codes for continuous communication channels.
High dimensions arise naturally in practice.

Instead of aspects of the problem or applications, we’ll justify
sphere packing by its solutions:

A question is good if it has good answers.



What is known?

Each dimension has its own idiosyncrasies.

Good constructions are known for low dimensions.

Iteratively stacking layers from the previous dimension is not a
general solution (it fails by R10).

No idea what the best high-dimensional packings look like. They
may even be disordered.

Upper/lower density bounds in general.

Bounds are very far apart:
For n = 36, differ by a multiplicative factor of 52.
This factor grows exponentially as n → ∞.



Packing in high dimensions

Easy theorem: every saturated packing (i.e., one in which no more
spheres can be added) in n dimensions has density at least 2−n.

Proof: Double the radius of the spheres. All of space must be then
covered, since any uncovered point could have been the center of
an additional sphere in the original packing.

uncovered point could be center of new sphere

Doubling the radius multiplies the volume by 2n. Q.E.D.

This bound is very nearly all we know!



Asymptotics for packing in high dimensions

Greedy argument: density at least 2−n.

Minkowski (1905): at least 2 · 2−n.

...

Ball (1992): at least 2n · 2−n.

Vance (2011): at least 6
e n · 2−n when n is a multiple of 4.

Venkatesh (2013): at least e−γ

2 n log log n · 2−n for a certain sparse
sequence of dimensions.

Campos, Jenssen, Michelen, and Sahasrabudhe (2023): at least
1
2n log n · 2−n.

Klartag (2025): at least cn2 · 2−n with c > 0.

For comparison, the best upper bound known is 2−(0.599...+o(1))n,
due to Kabatiansky and Levenshtein (1978).



Record packings and bounds
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The most remarkable packings

Amazing lattices in certain dimensions:

E8 root lattice in R8

Leech lattice Λ24 in R24

Extremely symmetrical and dense packings of spheres.

Connected with many areas in mathematics and physics (e.g.,
string theory, modular forms, hyperbolic geometry, finite simple
groups, error-correcting codes).

What makes these cases work out so well?

Notice that they rise to meet the upper bound, not vice versa.



What is E8?

Existence proved by H. J. S. Smith in
1867 via nonconstructive mass formula.

Constructed explicitly by A. Korkine and
G. Zolotareff in 1873.

Appeared as the exceptional root lattice
E8 in W. Killing’s 1890 classification of
semisimple Lie algebras.

Constructed by T. Gosset in 1900 as the
vertex set of a semiregular tessellation
of R8 by simplices and cross polytopes
(8-dimensional analogues of tetrahedra
and octahedra).

H. J. S. Smith

(image by R. A. Nonenmacher)



How can we pack spheres?

Lattice: integer span of n linearly independent vectors. I.e., for
basis v1, . . . , vn, center spheres at

{a1v1 + a2v2 + · · ·+ anvn | a1, . . . , an ∈ Z}.

Packing radius = half the shortest non-zero vector length.



Lattice density
If Λ is a lattice in Rn with minimal vector length r , then its density
is

vol(ball) · (# balls per unit volume in space),

which equals

vol(Bn
r/2) ·

1

vol(Rn/Λ)
.

Here vol(Rn/Λ) is the volume of a fundamental cell, i.e., the
absolute value of the determinant of a basis matrix.



Periodic packings

In a periodic packing, spheres are not restricted to just the corners
of a fundamental cell.

No reason to believe densest packing must be periodic, but
periodic packings come arbitrarily close to the maximum density.

By contrast, lattices probably do not.



The best sphere packings currently known are not always lattice
packings, but many good packings are.

Simplest lattice: Zn, lousy packing.

Better: for n ≥ 3, “checkerboard” packing

Dn = {(x1, . . . , xn) ∈ Zn | x1 + · · ·+ xn is even}.

D3, D4, D5 are best known packings in those dimensions, and
provably best lattice packings.



What happens for larger n?

The holes in Dn grow larger and larger.

A hole is a local maximum for distance from nearest lattice point.

holes in Z2

Where are the holes in Dn?



Two classes of holes in Dn (for n ≥ 3):

▶ (1, 0, . . . , 0) at distance 1 from lattice.

▶ (1/2, 1/2, . . . , 1/2) at distance√(
1

2

)2

+ · · ·+
(
1

2

)2

=

√
n

4
.

For comparison, nearest lattice points are

(0, 0, . . . , 0) and (1, 1, 0, . . . , 0)

at distance
√
2.



Wonderful properties of dimension 8

When n = 8, radius
√
n/4 of deep hole equals distance

√
2

between lattice points.

We can slip another copy of D8 into the holes! This doubles the
packing density.

Result called E8 lattice.

Leech lattice (n = 24) is similar in spirit, but more complicated.



Key properties of E8

Distances between distinct lattices points are
√
2k with

k = 1, 2, . . . , and vol(R8/E8) = 1.

E8 is a self-dual lattice: E ∗
8 = E8. To obtain the dual lattice Λ∗ of

a lattice Λ,
let v1, . . . , vn be any basis of Λ, and
let v∗1 , . . . , v

∗
n be the dual basis satisfying ⟨vi , v∗j ⟩ = δi ,j .

Then v∗1 , . . . , v
∗
n is a basis of Λ∗.

Net result: E8 is an even unimodular lattice.

Leech lattice works the same, but without points at distance
√
2.



So how can we prove upper bounds for density?



Linear programming bounds for sphere packing

Developed by H. Cohn and N. Elkies, based on a line of research
going back to P. Delsarte in 1972.

Uses harmonic analysis, in particular the Fourier transform, to
analyze pair correlations in packings.

Auxiliary functions with certain properties yield upper bounds for
packing density.

No reference to special dimensions such as eight and twenty-four,
yet the bounds end up being sharp in these dimensions.



Fourier transform

Define the Fourier transform f̂ of an integrable function
f : Rn → R by

f̂ (y) =

∫
Rn

f (x)e−2πi⟨x ,y⟩ dx .

If f̂ is integrable as well, then Fourier inversion tells us that

f (x) =

∫
Rn

f̂ (y)e2πi⟨x ,y⟩ dy .

In other words, f̂ tells how to decompose f into complex
exponentials, and vice versa.



Significance of the Fourier transform in discrete geometry

It diagonalizes the operation of translation by any vector.

Specifically,

f (x) =

∫
Rn

f̂ (y)e2πi⟨x ,y⟩ dy .

implies

f (x + t) =

∫
Rn

f̂ (y)e2πi⟨t,y⟩e2πi⟨x ,y⟩ dy .

I.e., translating the input to the function f by t amounts to
multiplying its Fourier transform f̂ (y) by e2πi⟨t,y⟩.

Simultaneously diagonalizing all these translation operators makes
the Fourier transform an ideal tool for studying periodic structures.



Poisson summation

Our key technical tool is the Poisson summation formula:

If f : Rn → R is sufficiently nice and Λ is a lattice in Rn, then∑
x∈Λ

f (x) =
1

vol(Rn/Λ)

∑
y∈Λ∗

f̂ (y).

Here vol(Rn/Λ) is the determinant of Λ, and Λ∗ is the dual lattice.

I.e., up to a scaling factor,
summing a function over a lattice

is the same as
summing its Fourier transform over the dual lattice.



Proof of Poisson summation

Poisson summation is the special case t = 0 of∑
x∈Λ

f (x + t) =
1

vol(Rn/Λ)

∑
y∈Λ∗

f̂ (y)e2πi⟨y ,t⟩.

Left side is periodic modulo Λ, and right side is its Fourier series.

The function t 7→ e2πi⟨y ,t⟩ is periodic modulo Λ iff y ∈ Λ∗.

Given left side, it’s not hard to compute the Fourier coefficients by
orthogonality.



Linear programming bounds

Theorem (Cohn and Elkies 2003).
Let f : Rn → R be a radial Schwartz function (i.e., smooth
and rapidly decaying) and let r > 0, with

f (0) = f̂ (0) > 0,

f (x) ≤ 0 for |x | ≥ r , and

f̂ (y) ≥ 0 for all y .

Then the sphere packing density in Rn is at most vol
(
Bn
r/2

)
.

The volume vol
(
Bn
r/2

)
of a ball of radius r/2 in Rn is πn/2

(n/2)!

(
r
2

)n
,

where (n/2)! means Γ(n/2 + 1) when n is odd.

We can radially symmetrize f , since all the constraints are invariant
under rotation. Thus, f is a function of one (radial) variable.



Proof for lattices (general case is similar)

Suppose Λ is a lattice packing with spheres of radius r/2. I.e., the
minimal vector length is at least r . Then

f (0) ≥
∑
x∈Λ

f (x)

because f (x) ≤ 0 for |x | ≥ r , while

1

vol(Rn/Λ)

∑
y∈Λ∗

f̂ (y) ≥ f̂ (0)

vol(Rn/Λ)

because f̂ (y) ≥ 0 for all y . Thus, by Poisson summation,

f (0) ≥ f̂ (0)

vol(Rn/Λ)
,

so vol(Rn/Λ) ≥ 1 and thus there is at most one ball of radius r/2
per unit volume in space. Q.E.D.



How do we choose f ?

Nobody knows in general.

Get a trivial density bound of 1 via the convolution f = χB ∗ χB ,
where χB is the characteristic function of a ball of volume 1.

More sophisticated choices give the best density bounds known in
high dimensions.

In an arbitrary dimension, fall back on numerical optimization.
Get good bounds in general, and seemingly sharp bounds when
n = 1, 2, 8, or 24.



Record packings and bounds
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Equality?

Get a sharp bound for a lattice Λ iff f (x) = 0 for all x ∈ Λ \ {0}
and f̂ (y) = 0 for all y ∈ Λ∗ \ {0}.

A sharp bound is not difficult for n = 1, is conjectured for n = 2,
and holds for n = 8 and 24 (which solves the sphere packing
problem).

Need magic auxiliary functions to get a sharp bound.

For n = 8 and 24, we know exactly where the roots should be:
radius

√
2k with k ≥ 1 for E8 and k ≥ 2 for Λ24.



Approximate plots (not to scale)
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Numerical optimization using radial polynomials times Gaussians
yields 60+ decimal digits, but cannot get an exact bound since
polynomials have only finitely many roots.



Fundamental question

Do there exist radial functions f on R8 and R24 with these
prescribed roots for f and f̂ ?

Yes, to a close numerical approximation, but that is not a proof.

Unfortunately, it’s difficult to control a function and its Fourier
transform simultaneously. This is the Heisenberg uncertainty
principle.

Can we identify enough patterns to pin down these functions?



Quadratic coefficients

There are some numerical patterns, but not enough to determine
everything:

Conjecture (Cohn and Miller). The quadratic Taylor coefficients of
the magic functions f and f̂ (normalized with f (0) = f̂ (0) = 1) are
rational numbers when n = 8 or n = 24.

n function order coefficient conjecture

8 f 2 −2.7000000000000000000000000000 . . . −27/10

8 f̂ 2 −1.5000000000000000000000000000 . . . −3/2
24 f 2 −2.6276556776556776556776556776 . . . −14347/5460

24 f̂ 2 −1.3141025641025641025641025641 . . . −205/156
8 f 4 4.2167501240968298210998965628 . . . ?

8 f̂ 4 −1.2397969070295980026220596589 . . . ?
24 f 4 3.8619903167183007758184168473 . . . ?

24 f̂ 4 −0.7376727789015322303799539712 . . . ?

(Now proved using explicit formulas.)



Modular forms

Many people suspected the answer must involve modular forms,
because they are deep special functions related to lattices.

However, nobody could figure out how. Modular forms look
nothing like radial functions.



Viazovska’s quasimodular forms

Viazovska found an extraordinary integral transform that turns
these into the magic functions.



Eigenfunctions of the Fourier transform

Goal: radial functions such that f and f̂ have prescribed roots.

We’ll split f into eigenfunctions of the Fourier transform via
f = f+ + f− with f̂+ = f+ and f̂− = −f−.

This amounts to Fourier inversion:
̂̂
f = f for radial f , so we can

take f+ =
(
f + f̂

)
/2 and f− =

(
f − f̂

)
/2.

Because f and f̂ vanish at the same points, they share these roots
with f+ and f−.

New goal: construct radial eigenfunctions of Fourier transform
with prescribed roots. What are the magic eigenfunctions?



Modular forms

Viazovska uses modular forms to obtain the magic eigenfunctions.

Let h be the upper half-plane {z ∈ C : Im z > 0}.

A modular form of weight k for SL2(Z) is a holomorphic function
φ : h → C such that

φ(z + 1) = φ(z) and φ(−1/z) = zkφ(z)

for all z ∈ h, and φ(z) remains bounded as Im z → ∞ (“holomorphic
at infinity”).

Why are these functional equations important? They turn out to
come up surprisingly often in number theory.

What do they have to do with the magic functions? Not at all
obvious!



Examples

Eisenstein series Ek (not to be confused with E8!) defined by

Ek(z) =
1

2ζ(k)

∑
(m,n)∈Z2

(m,n)̸=(0,0)

1

(mz + n)k

is a modular form of weight k for SL2(Z) whenever k is an even
integer greater than 2 (while it vanishes when k is odd).

Proof is just rearrangement of series using absolute convergence.

What about k = 2? Conditional convergence leads to

E2(−1/z) = z2E2(z)−
6i

π
z ,

so only a “quasimodular form.” Nevertheless plays an important
role in sphere packing.



Examples

If Λ is an even unimodular lattice in Rn with N2k vectors of norm
2k for k = 0, 1, 2, . . . , then

ΘΛ(z) =
∞∑
k=0

N2ke
2πikz

is a modular form of weight n/2 for SL2(Z).

The identity ΘΛ(z + 1) = ΘΛ(z) is trivial, while
ΘΛ(−1/z) = zn/2ΘΛ(z) follows from Poisson summation.



Laplace transform

What do modular forms have to do with the magic functions?

Define f in terms of Gaussians by

f (x) =

∫ ∞

0
e−tπ|x |2g(t) dt.

The Fourier transform of a wide Gaussian is narrow and vice versa:

f̂ (y) =

∫ ∞

0
t−n/2e−π|y |2/tg(t) dt

=

∫ ∞

0
e−tπ|y |2tn/2−2g(1/t) dt.

In other words, taking the Fourier transform of f amounts to
replacing g with t 7→ tn/2−2g(1/t).



Connection with modular forms

If g(1/t) = εt2−n/2g(t) with ε = ±1, then f̂ = εf .

This looks like a modular form on the imaginary axis.

If g(t) = φ(it) for a modular form φ of weight k for SL2(Z), then
φ(−1/z) = zkφ(z) corresponds to g(1/t) = iktkg(t).

If φ is a meromorphic modular form of weight k = 2− n/2, then
f is a radial Fourier eigenfunction in Rn, with eigenvalue ik .

But can we control the roots? No obvious way to specify them.

(meromorphic modular form = ratio of holomorphic ones)



Toy version (with single roots)

Let G be the group generated by z 7→ z + 2 and z 7→ −1/z , which
has index 3 in SL2(Z).

Let φ be a weakly holomorphic modular form of weight 2− n/2 for
G , with its only pole at i∞ and such that it vanishes at 1. Then it
has a Fourier expansion

φ(z) =
∞∑

k=k0

cke
πikz ,

where k0 < 0.

Define a radial function f : Rn → R by

f (x) =

∫ 1

−1
φ(z)eπi |x |

2z dz ,

where the contour is the upper half of the unit circle.



Then f̂ = i2−n/2f and f (
√
k) = c−k for k ≥ 0 (i.e., f (x) = c−k

when |x | =
√
k). These are simple calculations:

f̂ (x) =

∫ 1

−1
φ(z)(z/i)−n/2eπi |x |

2(−1/z) dz

= in/2
∫ −1

1
φ(−1/z)zn/2eπi |x |

2z dz/z2

= i2−n/2f (x)

and Fourier orthogonality

f (
√
k) =

∫ 1

−1
φ(z)eπikz dz = c−k .

So f is a radial Fourier eigenfunction that vanishes at all but
finitely many square roots of integers. But getting double roots at√
2k instead is quite a bit more subtle. . .



Viazovska’s trick

Multiply by sin2
(
π|x |2/2

)
, which vanishes to second order at

|x | =
√
2k for k = 1, 2, 3, . . . .

Magic eigenfunctions have the form

sin2
(
π|x |2/2

) ∫ ∞

0
g(t)e−π|x |2t dt.

Obvious issue: sin2
(
π|x |2/2

)
vanishes too much at |x | = 0 and

|x | =
√
2. Integral must have poles to cancel unwanted roots. It

converges only for |x | >
√
2, but we can analytically continue.

The sine factors intefere with the Laplace transform. When do we
get an eigenfunction? Not obvious, but Viazovska gives an
argument by shifting contours of integration.



Sufficient conditions for an eigenfunction

For a +1 eigenfunction in R8,

g(t) = t2φ(i/t),

where φ is a weakly holomorphic quasimodular form of weight 0
and depth 2 for SL2(Z).

For a −1 eigenfunction in R8,

g(t) = ψ(it),

where ψ is a weakly holomorphic modular form of weight −2 for
the subgroup Γ(2) of SL2(Z) and

ψ(z) = ψ(z + 1) + z2ψ(−1/z).

Very strange conditions! Not at all obvious.



Obtaining the magic eigenfunctions
Look for quasimodular forms and hope for luck.

By now we have more insight (e.g., interpolation formulas, Dan
Romik’s proof), but it still feels like a miracle.



Higher dimensions

The linear programming bounds are probably not sharp in any
other dimensions greater than two.

Building on work of Schrijver, Bachoc and Vallentin, and others,
de Laat and Vallentin have generalized linear programming bounds
to a hierarchy of semidefinite programming bounds.

Are any other dimensions accessible at low levels of the hierarchy?
Perhaps optimality of D4 in R4?
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