
Gaussian energy in high dimensions

Henry Cohn
Microsoft Research and MIT

Thurston Lectures
UC Davis

May 14, 2025



Where does symmetry come from?

Genetics vs. systematology of the regular figures (L. Fejes Tóth):

“Regular arrangements are generated from unarranged,
chaotic sets by the ordering effect of an economy prin-
ciple, in the widest sense of the word.”



Framework: optimization problems

How symmetrical should we expect the solution of an optimization
problem to be?

Toy example: a Steiner tree connecting the vertices of a square.
What is the minimal-length connecting path?



An X is suboptimal:

Of course, these are the optimal solutions (2-d soap films):

The symmetry of the problem is partially broken in each individual
solution, but the set of all solutions retains the full symmetry.



How much symmetry should we expect?

It is amazing that crystals have so much symmetry, yet they break
rotational symmetry (and even most translational symmetry).
How does long-range order develop?

Symmetry makes it easier to solve problems, or at least guess the
answers.

Which optimization problems have remarkably symmetrical
answers? How can we understand why?



Examples

Regular polytopes

Finite simple groups

ADE classification

E8 root lattice in R8 and Leech lattice in R24



Setting: energy minimization

Given a collection of particles interacting according to some
potential function, what do they do?

For example, identical charged particles with Coulomb interactions
(potential energy 1/r for a pair of particles at distance r).
“Thompson problem” on S2.

Simplest question: what is the ground state? I.e., minimal energy
configuration, behavior at zero temperature.



Real physical systems

PMMA beads suspended in mixture of water and cyclohexyl bromide

(W. Irvine and P. Chaikin)



Today’s story

Ground states in 8 and 24 dimensions

Bounds based on pair correlation functions

Connections with Fourier interpolation

High-dimensional behavior



Broader context

How do particles arrange themselves under a repulsive force?

Infinitely many particles in Euclidean space.

Easy to guess the answer in R1 (equally spaced) or R2 (hexagonal).

What about higher dimensions, or proofs?



Setting

Classical point particles in Rd . Locations specified by subset C.

Pair potential function p, such as

p(r) = 1/r s with s > 0 or

p(r) = e−αr2 with α > 0.

Decreasing ⇔ repulsive. Sphere packing is limit as s or α → ∞.

We’ll fix density of δ particles per unit volume in space.

Energy of particle x ∈ C is

Ep,x(C) =
∑

y∈C\{x}

p(|x − y |).

Energy Ep(C) is average of Ep,x(C) over x ∈ C. (Define via limit.)



Recall that a lattice in Rd is the Z-span of a basis of Rd . I.e., it is
a regular grid, but not necessarily right-angled.

A lattice Λ has density
1

vol(Rd/Λ)

and energy ∑
x∈Λ\{0}

p(|x |),

since every point looks the same.

Lattices are among the simplest ways to arrange particles, but not
necessarily optimal.



In a periodic configuration, particles are not restricted to just the
vertices of a fundamental cell of a lattice.

Not all important arrangements are periodic. Other possibilities:
disordered, quasicrystal, phase coexistence, . . .



Ground states

C in Rd of density δ is a ground state, or minimizes energy, for
potential p if no other such configuration has lower energy under p.

Ground states describe behavior at zero temperature.

Sphere packing is a limiting case. Maximizing the minimal distance
between particles at a fixed particle density is energy minimization
for a steep potential.

Crystallization problem in mathematical physics (for classical,
mesoscale materials):

Why do particles often arrange themselves
periodically at zero temperature?



Difficulty

Ground states are a mystery.

We can’t predict ground states in most cases.

We can’t even predict qualitative features, such as whether there
should be a periodic ground state.

It’s easy to make false conjectures.

Even in two dimensions we generally can’t explain what is seen in
simulations.



Number theory

A lattice Λ has an Epstein zeta function

ζΛ(s) =
∑

x∈Λ\{0}

1

|x |2s

(for Re(s) > d/2) and theta series

ΘΛ(z) =
∑
x∈Λ

eπiz|x |
2

(for Im(z) > 0).

The energy of Λ under r 7→ 1/r s is ζΛ(s/2), and under r 7→ e−αr2

is ΘΛ(iα/π)− 1.

Thus, minimizing lattice energy amounts to finding extreme values
of number-theoretic special functions.



Universal optimality

When is a ground state independent of the potential function?

Which potential functions are reasonable to consider?

A function p : (0,∞) → R is completely monotonic if it is C∞ and
for all k , (−1)kp(k) ≥ 0. Nonnegative, decreasing, convex, etc.

A configuration C is universally optimal if it is a ground state for
all completely monotonic functions of squared distance. E.g.,
inverse power laws or Gaussians.

In fact, Gaussians span the cone of completely monotonic
functions of squared distance (Bernstein’s theorem), so

C is universally optimal iff it is a ground state for all Gaussians.

Equivalently, we can fix a Gaussian and vary the particle density.



Low dimensions

Theorem (Ventevogel and Nijboer, 1979). Z is universally optimal
in R.

Conjecture. The hexagonal lattice A2 is universally optimal in R2.

Proved optimal among lattices by Montgomery in 1988, but not
known in general.

Previously, no ground state was known for any nice, decreasing
potential function in dimension greater than 1. (No inverse power
law, no Gaussian, etc.)

Dealing with long-range interactions is tough.



Three dimensions

Consider the potential function r 7→ e−πr2 . What happens at
density δ? Universal optimality fails.

Conjecture. Among lattices, the face-centered cubic lattice A3 is
optimal for δ ≤ 1, and the body-centered cubic A∗

3 is optimal for
δ ≥ 1.

Same energy when δ = 1 by Poisson summation.
How does the phase transition near δ = 1 behave?

Stillinger (1976): phase coexistence, with lower energy when

0.99899854 . . . < δ < 1.00100312 . . . .

At δ = 1, improve energy by 0.0004%. Not periodic.

Is this the full answer? No idea. It deserves further exploration.



Universal optimality in R8 and R24

Theorem (Cohn, Kumar, Miller, Radchenko, and Viazovska, 2022).
The E8 root lattice in R8 and the Leech lattice in R24 are
universally optimal, and unique among periodic packings for
potentials under which they have finite energy.

Also seems to be true for the hexagonal lattice in R2, but we don’t
know how to prove it.

Simulations suggest universal optimality generally fails.
Dimensions 1, 2, 8, and 24 seem very special.



Pair correlation function

To prove this theorem, we use linear programming bounds based
on pair correlations.

Let C be a point configuration in a metric space X with metric d .

The pair correlation function pC for C counts how many times each
distance occurs between points in C.

When C is finite, pC : [0,∞) → N is defined by

pC(r) =
1

|C|
#{(x , y) ∈ C2 : d(x , y) = r}.

When C is infinite, we should take a suitable limit to get a
distribution, rather than a function.



The pair correlation function for C does not necessarily suffice to
reconstruct C.

In Euclidean space, it would be enough if we knew which distances
correspond to which pairs of points, but we don’t. For example,
the black and white configurations are not isometric, despite
having the same pair correlation functions:

(Fun exercise: how does this example generalize?)



This is the “phase problem” in X-ray crystallography. If C is the
locations of the atoms in a crystal sample, then X-ray diffraction
amounts to taking the Fourier transform P̂ of the particle
distribution

P =
∑
x∈C

δx .

We have
P̂(t) =

∑
x∈C

e2πi⟨x ,t⟩.

The scattering intensity |P̂|2 yields the pair correlations via

|P̂(t)|2 =
∑
x ,y∈C

e2πi⟨x−y ,t⟩.

In fact, it gives enough information to reconstruct the set
{x − y : x , y ∈ C}, but reconstructing C requires the phase of P̂.



The identity ∑
x ,y∈C

e2πi⟨x−y ,t⟩ = |P̂(t)|2 ≥ 0

is a key positivity property for the difference set {x − y : x , y ∈ C}
and therefore the pair correlation function. It occurs in various
fields:

In physics, the nonnegativity of the structure factor.

In statistics, the autocorrelation matrix is positive semidefinite.

In quantum field theory, it underlies the conformal bootstrap.

Our proof is based on this inequality. It’s noteworthy that this pair
correlation inequality is enough information to settle 8 and 24
dimensions, but nowhere near enough information for 3 dimensions.



Harmonic analysis

Recall that a Schwartz function f : Rd → R is a smooth function
whose partial derivatives (of all orders) decay faster than
1/(any polynomial). Think “nice function.”

We will normalize the Fourier transform by

f̂ (y) =

∫
Rd

f (x)e−2πi⟨x ,y⟩dx .

Schwartz functions are closed under the Fourier transform, as are
radial functions (i.e., functions where f (x) depends only on |x |).

The proof of universal optimality will require a new understanding
of radial Schwartz functions on R8 and R24.



Linear programming bound

Proposition (Cohn and Kumar, 2007). Let p : (0,∞) → R be any
function, and δ > 0. If f : Rd → R is a Schwartz function such
that

(1) f (x) ≤ p(|x |) for all x ∈ Rd \ {0} and

(2) f̂ (y) ≥ 0 for all y ∈ Rd ,

then every subset of Rd of density δ has p-energy at least
δf̂ (0)− f (0).

In other words, f satisfying inequalities (1) and (2) certifies a lower
bound for energy. It turns out (2) is related to pair correlation
positivity.

Without loss of generality, we can take f to be radial: average all
of its rotations about the origin.



How can we choose the best f for a given d , p, and δ?
Nobody knows, except for d ∈ {1, 8, 24}.

Numerics for potential p(r) = e−πr2 and density δ = 1 in Rd :

d Lower bound Current record

1 0.08643481 . . . 0.08643481 . . . (equal)
2 0.15959526 . . . 0.15959526 . . . (conj. equal)
3 0.22321782 . . . 0.23153532 . . .
4 0.27956960 . . . 0.28576449 . . .
5 0.33011740 . . . 0.34868410 . . .
6 0.37587226 . . . 0.38874675 . . .
7 0.41756856 . . . 0.42445404 . . .
8 0.45576289 . . . 0.45576289 . . . (equal)
24 0.79965280 . . . 0.79965280 . . . (equal)

Both columns are based on numerical optimization.



Theorem (Cohn and Kumar, 2007). The LP bound proves
universal optimality for Z in R1.

Ground states in one dimension are not exciting,
but they are trickier to analyze than they sound.

Conjecture (Cohn and Kumar, 2007). The LP bound proves
universal optimality for the hexagonal lattice A2 in R2.

Still not resolved!

Theorem (Cohn, Kumar, Miller, Radchenko, and Viazovska, 2022).
The LP bound proves universal optimality for E8 in R8 and the
Leech lattice in R24.

Why is this easier for R8 and R24 than R2?



Proof of LP bound for lattice Λ in Rd

Poisson summation says∑
x∈Λ

f (x) = δ
∑
y∈Λ∗

f̂ (y).

Thus,

Ep(Λ) =
∑

x∈Λ\{0}

p(|x |)

≥
∑

x∈Λ\{0}

f (x) because f (x) ≤ p(|x |)

= −f (0) + δ
∑
y∈Λ∗

f̂ (y) by Poisson summation

≥ δf̂ (0)− f (0). because f̂ (y) ≥ 0

The proof for non-lattices is similar in spirit.



When does f prove a sharp bound for energy?
To avoid any loss in the inequalities, we need

1. f (x) = p(|x |) for all x ∈ Λ \ {0}, and
2. f̂ (y) = 0 for all y ∈ Λ∗ \ {0}.

Furthermore, these inequalities must hold to order two. I.e., the
radial derivatives satisfy f ′(x) = p′(|x |) and f̂ ′(y) = 0.

For E8 and the Leech lattice, we have Λ∗ = Λ,
with vector lengths

√
2n for n ≥ n0,

where n0 = 1 for d = 8 and n0 = 2 for d = 24.

In other words, for n ≥ n0 we need

f
(√

2n
)
= p

(√
2n

)
,

f ′
(√

2n
)
= p′

(√
2n

)
,

f̂
(√

2n
)
= 0,

f̂ ′(√2n
)
= 0.



Can we reconstruct a radial f from this information?
I.e., from knowing f

(√
2n

)
, f ′

(√
2n

)
, f̂

(√
2n

)
, and f̂ ′(√2n

)
for all integers n ≥ n0.

My intuition said no, but Viazovska conjectured yes.
We prove this conjecture.



Interpolation theorem

Theorem (Cohn, Kumar, Miller, Radchenko, and Viazovska, 2022).
Let (d , n0) be (8, 1) or (24, 2). Then every radial Schwartz
function f on Rd is uniquely determined by the values f

(√
2n

)
,

f ′
(√

2n
)
, f̂

(√
2n

)
, and f̂ ′(√2n

)
for integers n ≥ n0.

Specifically, there exists an interpolation basis an, bn, ãn, b̃n for
n ≥ n0 such that for every radial Schwartz function f and x ∈ Rd ,

f (x) =
∞∑

n=n0

f
(√

2n
)
an(x) +

∞∑
n=n0

f ′
(√

2n
)
bn(x)

+
∞∑

n=n0

f̂
(√

2n
)
ãn(x) +

∞∑
n=n0

f̂ ′(√2n
)
b̃n(x).



We construct the interpolation basis explicitly. This gives the
optimal auxiliary function f via

f (x) =
∑
n≥n0

(
p
(√

2n
)
an(x) + p′

(√
2n

)
bn(x)

)
.

To characterize the basis, we use generating functions. The
interpolation theorem is then equivalent to constructing generating
functions that satisfy certain functional equations, as well as
smoothness and growth conditions, and these functional equations
can be solved using integral transforms of modular forms.



High dimensions

What happens in Rd with particle density δ and potential function
r 7→ e−αr2 , with δ and α fixed and d → ∞?

Theorem (Cohn and de Courcy-Ireland, 2018).
If α < 4π/e, then the minimal energy is (δ + o(1))(π/α)d/2 as
d → ∞, which is the average energy of a random lattice.
If α > πe, then the minimal energy is exponentially lower than the
average energy of a random lattice.

We do not know where this transition takes place, other than
somewhere between 4π/e and πe, or whether there are further
transitions.



The Siegel mean value theorem

What does it mean to average over all lattices? Recall lattice =
discrete subgroup of Rd with rank d .

It’s not quite obvious, but there is a canonical probability measure
on lattices with fixed determinant (i.e., fundamental cell volume).
Key concept: SLd(R)-invariance.

What does the average pair correlation function look like? It
measures the average number of neighbors at each distance.

Siegel mean value theorem: it is exactly the same as for a Poisson
distribution (uniformly scattered points).



More precisely: given nice f : Rd → R, the average of∑
x∈Λ\{0}

f (x)

over all lattices Λ of particle density δ equals

δ

∫
Rd

f (x) dx .

Why is this true? There is enough symmetry to rule out any other
possible answer.

Specifically, by linearity the answer must be
∫
f dµ for some regular

Borel measure µ on Rd \ {0} that is invariant under SLd(R). This
is only one such measure, up to scaling, and some simple
consistency checks determine the constant of proportionality.



Meta principle: averaging over all possible structures is the same
as having no structure at all.

This is certainly not always true. It generally depends on having a
big enough symmetry group.

Breaks down a little for higher correlation functions, but get
Poisson statistics modulo obvious restrictions (e.g., three points in
a row for three-point correlations).



Upper bound

The average energy under r 7→ e−αr2 of a random lattice in Rd

with δ points per unit volume in space is

δ

∫
Rd

e−α|x |2 dx = δ(π/α)d/2.

Thus, there must be a lattice of at most this energy.

When α > πe, we can get lower energy by conditioning on not
having any especially short lattice vectors.



Lower bound

We get a lower bound by applying the Shannon sampling theorem
to approximate the potential function from below by a bandlimited
function.

This works up to α < 4π/e, but for α < π there is a simpler proof:

In the linear programming bound, use the auxiliary function
f (r) = e−αr2 . It is equal to the potential function, and it is
positive definite, with a resulting lower bound of

δf̂ (0)− f (0) = δ(π/α)d/2 − 1.

If α < π, then the −1 is negligible as d → ∞ and we get a lower
bound of (δ + o(1))(π/α)d/2.

For π ≤ α < 4π/e, getting such a bound is not nearly as simple (as
far as we know), and of course this lower bound is false for α > πe.



Open questions

What happens as the dimension tends to infinity?

How can one prove universal optimality in R2? Lots of real-world
materials involve two-dimensional interfaces.

The analogous interpolation theorem does not seem to be true in
R2. Can it be salvaged? (For comparison, R1 is very different from
R8 or R24.)

Can one give a simpler proof of the interpolation theorem, if one
doesn’t care about writing down an explicit interpolation basis?

How does the interpolation theorem generalize? Which
values/derivatives of f and f̂ suffice to reconstruct a radial
Schwartz function?

How does all of this extend to higher-order correlations?
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