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What’s an uncertainty principle?
Tradeoff between properties of f : Rd → C and Fourier transform
f̂ , defined for integrable f by

f̂ (y) =

∫
Rd

f (x)e−2πi⟨x ,y⟩ dx .

Here ⟨·, ·⟩ is the inner product on Rd . Fourier inversion says

f (x) =

∫
Rd

f̂ (y)e2πi⟨x ,y⟩ dy

when f̂ is integrable. I.e., f̂ decomposes f into complex
exponentials (pure frequencies), and vice versa.

As a reminder of something we’ll use later, Fourier inversion implies

||f ||∞ = sup
x

|f (x)| ≤
∫
Rd

|f̂ (y)e2πi⟨x ,y⟩| dy =

∫
Rd

|f̂ (y)| dy = ||f̂ ||1.



Heisenberg’s uncertainty principle

A quantum particle’s position and momentum cannot
simultaneously be pinned down to high precision.

You cannot confine a particle in a small box and keep it still.

This is not a statement about human knowledge or measurement,
but rather about quantum reality itself.

Let’s use one spatial dimension for notational convenience and
choose units with Planck’s constant h = 1. Then a particle has a
wave function f ∈ L2(R), normalized with ||f ||2 = 1.

|f (x)|2 dx gives a probability distribution on positions x

|f̂ (y)|2 dy gives a probability distribution on momenta y

This is part of the basic setup of quantum mechanics. Now the
question becomes how tightly concentrated f and f̂ can be.



expected position =

∫
R
x |f (x)|2 dx

expected momentum =

∫
R
y |f̂ (y)|2 dy

variance of position =

∫
R
x2|f (x)|2 dx −

(∫
R
x |f (x)|2 dx

)2

variance of momentum =

∫
R
y2|f̂ (y)|2 dy −

(∫
R
y |f̂ (y)|2 dy

)2

Heisenberg’s uncertainty principle:

product of variances ≥ 1

16π2

If the wave function is concentrated about one location in position
space, then its momentum must be spread out, and vice versa.

This inequality is sharp for Gaussians. Let’s prove it.



WLOG translate and phase shift so expected position and
momentum are zero, and assume differentiable. Want to prove∫

R
x2|f (x)|2 dx

∫
R
y2|f̂ (y)|2 dy ≥ ||f ||42

16π2
.

Since differentiating f multiplies f̂ (y) by 2πiy ,∫
R
y2|f̂ (y)|2 dy =

1

4π2

∫
R
|f ′(x)|2 dx .

Now by Cauchy-Schwarz,∫
R
x2|f (x)|2 dx

∫
R
|f ′(x)|2 dx ≥

(∫
R
|xf (x)f ′(x)| dx

)2

≥
(∫

R
x Re(f (x)f ′(x)) dx

)2

=
1

4

(∫
R
x
d

dx
|f (x)|2 dx

)2

=
||f ||42
4

. [integration by parts]



Musical uncertainty

Uncertainty is by no means restricted to quantum mechanics.
Instead, it’s a basic phenomenon in Fourier analysis.

For example, a musical note cannot be sharply concentrated in
both time and frequency.

This sounds weird at first: if a note is very short, then it must be
diffuse in frequency.

But musical uncertainty is not so unfamiliar. How do you tune a
musical instrument?



Tuning

Compare with a tuning fork and listen for beats as the two waves
move in and out of constructive interference.

This basically amounts to the sum-to-product formula

sin 2παx + sin 2π(α+ ε)x =
(
2 cosπεx

)
sin 2π(α+ ε/2)x .

I.e., overlaying pure sine waves of frequencies α and α+ ε sounds
like a sine wave of frequency α+ ε/2, except modulated with beats
at frequency ε/2. Your ears may not detect a frequency difference
of order ε, but you can hear the amplitude variation from cosπεx .

To tune the instrument to within ε, you’ll have to listen for a time
on the order of 1/ε to detect the beats.

The uncertainty principle says this is optimal to within a constant
factor.



Variations

There are many different uncertainty principles, such as:

f and f̂ cannot both have compact support unless f = 0.

Proof: if f̂ has compact support, then Fourier inversion shows that
f is holomorphic.

Landau, Pollak, and Slepian asked in the 1960s how much of the
energy (i.e., L2 norm) can be concentrated in a given time interval
for a band-limited signal (i.e., one with a limited frequency range).
Prolate spheroidal wave functions optimize this quantity.

Most uncertainty principles measure disperson or concentration,
but in 2010 Bourgain, Clozel, and Kahane developed an uncertainty
principle for signs of functions. That will be our topic today.



Uncertainty for signs

f : Rd → R is eventually nonnegative if f (x) ≥ 0 for all sufficiently
large |x |. Let the last sign change radius be

r(f ) = inf {R ≥ 0 : f (x) has the same sign for |x | ≥ R},

and let A+(d) be the set of functions f : Rd → R such that

1. f ∈ L1(Rd), f̂ ∈ L1(Rd), and f̂ is real-valued (i.e., f is even),

2. f is eventually nonnegative while f̂ (0) ≤ 0, and

3. f̂ is eventually nonnegative while f (0) ≤ 0.

The uncertainty principle of Bourgain, Clozel, and Kahane says

A+(d) := inf
f ∈A+(d)\{0}

√
r(f )r(f̂ ) > 0.

I.e., r(f ) and r(f̂ ) cannot both be small. Note that r(f )r(f̂ ) is
invariant under rescaling the input to f .



Reductions

Suppose f ∈ A+(d) \ {0}. I.e., f and f̂ are eventually
nonnegative, while f (0) ≤ 0 and f̂ (0) ≤ 0.

1. By rescaling input, assume r(f ) = r(f̂ ) and preserve r(f )r(f̂ ).

2. Now let g = f + f̂ . Then g(0) ≤ 0 and g is eventually
nonnegative, with r(g) ≤ r(f ). Furthermore, g is not
identically zero (else f and f̂ would have compact support).

3. Now we have a Fourier eigenfunction with eigenvalue +1:
ĝ = g .

4. We can assume g(0) = 0. Otherwise, add a positive multiple
of x 7→ e−π|x |2 to g .

Problem (+1 eigenfunction uncertainty principle)

Minimize r(g) over all g : Rd → R such that

1. g ∈ L1(Rd) \ {0} and ĝ = g , and

2. g(0) = 0 and g is eventually nonnegative.



Proof of BCK uncertainty principle

Normalize ∥g∥1 = 1, and let g+ = max{g , 0} and
g− = max{−g , 0}. Since

∫
Rd g = ĝ(0) = 0,∫

Rd

g+ =

∫
Rd

g−.

Furthermore, ∫
Rd

g− =

∫
Bd
r(g)

g−,

where Bd
r(g) is a d-dimensional ball of radius r(g) and centered at

the origin, because {x ∈ Rd : g(x) < 0} ⊆ Bd
r(g). It follows that∫

Bd
r(g)

g− = 1/2,

because ∥g∥1 = 1.



The equation ∫
Bd
r(g)

g− = 1/2,

implies

1/2 ≤ vol
(
Bd
1

)
r(g)d∥g∥∞

≤ vol
(
Bd
1

)
r(g)d∥ĝ∥1

= vol
(
Bd
1

)
r(g)d∥g∥1

= vol
(
Bd
1

)
r(g)d ,

and we conclude that

r(g) ≥

(
1

2 vol
(
Bd
1

))1/d

>

√
d

2πe
.

Using a quadratic polynomial in |x |2 times the Gaussian e−π|x |2

shows that A+(d) ≤
√

d+2
2π = O

(√
d
)
.



Exact values

But what is A+(d) exactly? Can we obtain a sharp inequality?

So far, only when d = 12. It’s a mystery why one seemingly
arbitrary dimension has unexpected arithmetic structure.

Theorem (Cohn and Gonçalves 2019)

We have A+(12) =
√
2. In particular, there exists a radial

Schwartz function f : R12 → R that is eventually nonnegative and
satisfies f̂ = f , f (0) = 0, and

r(f ) =
√
2.

Moreover, as a radial function f has a double root at |x | = 0, a
single root at |x | =

√
2, and double roots at |x | =

√
2j for integers

j ≥ 2.



Numerics: upper bounds for A+(d)

d A+(d) d A+(d) d A+(d)

1 0.572990 13 1.458239 25 1.894060
2 0.756207 14 1.500647 26 1.925084
3 0.887864 15 1.541603 27 1.955522
4 0.965953 16 1.581246 28 1.985407
5 1.036454 17 1.619692 29 2.014769
6 1.101116 18 1.657044 30 2.043633
7 1.161109 19 1.693390 31 2.072024
8 1.217275 20 1.728806 32 2.099965
9 1.270241 21 1.763360 33 2.127476
10 1.320483 22 1.797112 34 2.154577
11 1.368375 23 1.830115 35 2.181286
12 1.414214 24 1.862417 36 2.207618

Obtained using polynomials times Gaussians. Aside from rounding
the last digit up, all digits are probably optimal for d ≥ 3.



Open question: matching lower bounds

How can we obtain (nearly) matching lower bounds numerically?

This is a more subtle question than upper bounds, which just
require producing a single function.

It ought to be possible via a suitable summation formula, but we
don’t know how to carry this out explicitly.



Sphere packing

The exact 12-dimensional function can be constructed using
Viazovska’s techniques, developed to solve the sphere packing
problem in 8 and 24 dimensions.

The upper bound comes from a certain integral transform of a
modular form.

The lower bound comes from the Eisenstein series E6.

What does this problem have to do with sphere packing?



Linear programming bound
Converts an auxiliary function f : Rd → R into a bound for the
sphere packing density ∆d in Rd .

Theorem (Cohn and Elkies 2003)

Suppose f is integrable, f̂ is also integrable, f̂ is real-valued (i.e.,
f is even), f (0) = f̂ (0) = 1, f̂ ≥ 0 everywhere, and f is eventually
nonpositive. Then

∆d ≤ vol
(
Bd
r(f )/2

)
.

Optimizing this bound amounts to minimizing r(f ). The exact
optimum is not known except for

d = 1 (easy), d = 8 (Viazovska 2017), and
d = 24 (Cohn, Kumar, Miller, Radchenko, and Viazovska 2017),

where the optima are 1,
√
2, and 2, respectively. For d = 2, it is

conjectured that the optimum is (4/3)1/4, but no other exact
values are even conjectured.



Theorem (Cohn and Elkies 2003)

Suppose f is integrable, f̂ is also integrable, f̂ is real-valued (i.e.,
f is even), f (0) = f̂ (0) = 1, f̂ ≥ 0 everywhere, and f is eventually
nonpositive. Then

∆d ≤ vol
(
Bd
r(f )/2

)
.

Given such an f , let g = f̂ − f . Then g is not identically zero, or
else f and f̂ would both have compact support. Furthermore,
r(g) ≤ r(f ).

Problem (−1 eigenfunction uncertainty principle)

Minimize r(g) over all g : Rd → R such that

1. g ∈ L1(Rd) \ {0} and ĝ = −g , and

2. g(0) = 0 and g is eventually nonnegative.



Elkies and I conjectured that these problems have exactly the same
answer.

Specifically, that every g from the −1 eigenfunction uncertainty
principle can be lifted to an f proving the same bound for sphere
packings, with g = f̂ − f .

This is true numerically for every function anyone has ever
constructed. How hard can it be to prove in general?

By far the biggest technicality in Viazovska’s proof is piecing
together the +1 and −1 eigenfunctions to get the right inequality.
If we could prove this conjecture, we could dispense with the +1
eigenfunction entirely and substantially simplify the proof.



Comparison

These uncertainty principles (Bourgain-Clozel-Kahane 2010 and
Cohn-Elkies 2003) are almost the same:

Problem (+1 eigenfunction uncertainty principle)

Minimize r(g) over all g : Rd → R such that

1. g ∈ L1(Rd) \ {0} and ĝ = g , and

2. g(0) = 0 and g is eventually nonnegative.

Problem (−1 eigenfunction uncertainty principle)

Minimize r(g) over all g : Rd → R such that

1. g ∈ L1(Rd) \ {0} and ĝ = −g , and

2. g(0) = 0 and g is eventually nonnegative.



Let A−(d) be the set of functions such that

1. f ∈ L1(Rd), f̂ ∈ L1(Rd), and f̂ is real-valued (i.e., f is even),

2. f is eventually nonnegative while f̂ (0) ≤ 0, and

3. f̂ is eventually nonpositive while f (0) ≥ 0.

Then

A−(d) := inf
f ∈A−(d)\{0}

√
r(f )r(f̂ )

is also the optimal constant from the −1 eigenfunction uncertainty
principle. Shown by similar reductions to the +1 case.

Again, A−(d) is within a constant factor of
√
d .

This gives a complementary uncertainty principle to that of
Bourgain, Clozel, and Kahane, for functions with opposite signs.



Meaning of linear programming bounds

What do the linear programming bounds mean in general
dimensions?

When they aren’t sharp, are they just some arbitrary bounds,
of no particular interest once they have been superseded by
improved bounds?

We believe these bounds always have an independent meaning,
as optimal constants in an uncertainty principle.

But we still can’t prove the underlying conjecture.



How much do A+(d) and A−(d) differ?

Pretty close in high dimensions, but almost certainly not equal.

Gonçalves and I conjecture that

lim
d→∞

A+(d)√
d

= lim
d→∞

A−(d)√
d

,

and Afkhami-Jeddi, Hartman, de Laat, Tajdini, and I conjectured
that the limit is 1/π.

But we can only estimate four digits reliably, so it’s unclear how
believable this conjecture is.



Conformal field theories (CFTs)

These uncertainty principles turn out to be connected to conformal
field theory in two dimensions.

There are many different 2d CFTs, governing the behavior of
various statistical mechanics models at critical points. Think scale
invariance plus ε. (The ε is conceptually important but automatic
in some cases.)

(Ising model image by David Wilson)



Hierarchy of exceptional structures

binary codes, Mathieu groups
↓

lattices, Conway groups
↓

vertex operator algebras and CFTs, monster group

Each level used to construct the next. This accounts for 20 of the
26 sporadic finite simple groups.



Conformal bootstrap

What can we learn about the space of possible CFTs from
self-consistency? For example, from conformal invariance of
partition functions.

Much of quantum field theory is not rigorous, but here we can
formulate clean mathematics, even if some physical consequences
are heuristic.

The objects may or may not be well defined, but we can specify
some constraints.



Quantum gravity

The (conjectural) AdS/CFT correspondence says

3d quantum gravity in anti-de Sitter space

↔
2d CFT on conformal boundary

What can we learn about possibilities for quantum gravity by
studying the space of CFTs (“theory space”)?

This is a toy model, since AdS means negative cosmological
constant (doesn’t match astronomical data).



Let’s treat the physics as a black box and look at the torus
partition function.

Every 2d torus is conformally equivalent to a flat torus
(uniformization), so it’s C/Λ for some lattice Λ, which we can
rescale or rotate. Pick a basis τ, 1 with τ in the upper half plane.

Change of basis is action of SL2(Z), and space of tori is quotient.

What is the partition function? Here it’s a generating function for
“scaling dimension” and “spin” of states.



A conformal algebra acts on our CFT. It’s at least the Virasoro
algebra, and possibly larger. We’ll focus on U(1)c , the theory of c
free bosons.

Hartman, Maźač, and Rastelli (2019) discovered that the spinless
modular bootstrap is equivalent to linear programming bounds for
sphere packings!

Write the partition function in terms of characters of U(1)c . If n∆
is the multiplicity of states with scaling dimension ∆, conformal
invariance of the partition function tells us that∑

∆

n∆e
2πiτ∆ =

∑
∆

n∆(i/τ)
d/2e2πi(−1/τ)∆,

where d is the sum of the holomorphic and antiholomorphic
conformal charges (d = 2c for c free bosons).



∑
∆

n∆e
2πiτ∆ =

∑
∆

n∆(i/τ)
d/2e2πi(−1/τ)∆

For Im(τ) > 0, x 7→ e2πiτ |x |
2/2 is a complex Gaussian on Rd with

Fourier transform y 7→ (i/τ)d/2e2πi(−1/τ)(|y |2/2). I.e., setting
∆ = |x |2/2 makes this look like Poisson summation:∑

∆

n∆f (
√
2∆) =

∑
∆

n∆f̂ (
√
2∆).

This must hold for all radial Schwartz functions f on Rd , since
complex Gaussians span a dense subspace.

But Poisson summation was the only input we needed for linear
programming bounds! It applies just as well regardless of whether
the formula comes from a sphere packing or a CFT.



So what does this mean?

The sphere packing bounds were secretly also upper bounds for the
spectral gap of a CFT, the smallest nonzero scaling dimension ∆1

of a primary field (analogous to packing radius).

“Pure quantum gravity” is expected to have just Virasoro
symmetry and ∆1 ∼ c/12 as c → ∞. A key question for the
conformal bootstrap is whether such a large spectral gap is even
possible, or whether gravity requires additional primary fields.

Nobody knows.



U(1) gravity

Afkhami-Jeddi, Hartman, Tajdini, and I, and independently
Maloney and Witten, proposed a holographic dual to pure 3d
gravity for free bosons, called U(1) gravity.

It is obtained by using results of Siegel to average over Narain
lattices, a more sphisticated version of the Siegel mean value
theorem from Wednesday.

This is definitely not real-world physics. Maybe it’s to actual
quantum gravity as the simple harmonic oscillator is to statistical
mechanics. However, it gives a concrete way to obtain CFTs with
large spectral gaps and carry out explicit calculations for an
unusual form of pure gravity.



Let’s return to Bourgain-Clozel-Kahane uncertainty.

Does it have CFT implications? These sign patterns do arise in
theories with discrete anomalies or fermions, but we don’t have a
concrete proposal. Maybe the d = 12 bound is related to K3 sigma
models?

Does it have packing or other discrete geometry implications?
So far no one has found any.

But it has to mean something: every thread seems to lead
somewhere. . .
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