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When does a differential equation have algebraic
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Algebraic: Satisfies a polynomial whose coefficients are rational
functions.
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Algebraic: Satisfies a polynomial whose coefficients are rational
functions.

Example

F(z) = v/1 + z is algebraic: satisfies F2 —z — 1 = 0.



When does a differential equation have algebraic
solutions? (Fuchs, 1875)

Algebraic: Satisfies a polynomial whose coefficients are rational
functions.

Example

F(z) = v/1 + z is algebraic: satisfies F2 —z — 1 = 0.
e?,log(z) are not algebraic



Hypergeometric functions

F(a,b;c;z) i (@)n (b . Z” where (a), = a(a+1)(a+2) - - (a+n—1)

satisfies



Hypergeometric functions

F(a,b;c;z) = Z Wz” where (a), = a(a+1)(a+2)--- (a+n—1)

dF
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Schwarz’s list (1973)
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Hypergeometric functions

F(a,b;c;z) i (a)n (b z” where (a), = a(a+1)(a+2)--- (a+n—1)

— (c)nn!
satisfies
d*F dF
Z(l*Z)@‘F[C*(&‘Fb‘Fl)Z]& —abF—O

Hermann Schwarz, Wikimedia commons
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An example



Solutions: f(z) = cz

a

An example



An example

d a
i
<dz z> (z)=0
Solutions: f(z) = cz?

Solutions algebraic <= a € Q



An example, cont.

3 -4

Riemann surfaces for z1/3 and zV2



The Grothendieck-Katz p-curvature conjecture

Conjecture (Grothendieck-Katz)

Let A € Mat,,(Q(z)). All solutions to

<d¥"z —A) fz) =0

P
(i—/\) =0mod p

are algebraic <

dz

for all but finitely many primes p.



An example, continued

Want to show: )
<d - a) =0modp

dz z

for almost all primes p iff a is rational.



An example, continued

Want to show:

d a\’
<dZ_Z> :Omodp

for almost all primes p iff a is rational.

d a

(dz—Z>pz”:(a—n)(a—n—1)---(a—n—p+1)z”_p



An example, continued

Want to show:

d a\’
<dZ_Z> :Omodp

for almost all primes p iff a is rational.

d a

(dz—Z>pz”:(a—n)(a—n—1)---(a—n—p+1)z”_p

This vanishes mod p iffa = 0,1,--- ,p — 1 mod p.



An example, continued

Want to show:

d a\’
<dZ_Z> :Omodp

for almost all primes p iff a is rational.

d a

(dz—Z>pz”:(a—n)(a—n—1)---(a—n—p+1)z”_p

This vanishes mod p iffa = 0,1,--- ,p — 1 mod p.
This happens for almost all p iff a € Q, by



An example, continued

Want to show:

d a\’
<dZ_Z> :Omodp

for almost all primes p iff a is rational.

(d_a)”zn:(a—n)(a—n_1)...(a_n_p+1)zn_p

dz z
This vanishes mod p iffa = 0,1,--- ,p — 1 mod p.
This happens for almost all p iff a € QQ, by the Chebotarev density
theorem.



Known cases

The Grothendieck-Katz p-curvature conjecture is known for:
e Picard-Fuchs equations (Katz, 1972)

e Differential equations with solvable monodromy
(Chudnovsky-Chudnovsky, André, Bost)



Known cases

The Grothendieck-Katz p-curvature conjecture is known for:
e Picard-Fuchs equations (Katz, 1972)
e Differential equations with solvable monodromy
(Chudnovsky-Chudnovsky, André, Bost)
Beautiful work by Esnault-Kisin, Esnault-Groechenig, Farb-Kisin,
Shankar, Shankar-Patel-Whang, Tang, - - -



What about...?
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What about...?

Question

e What about non-linear differential equations?
e What about a more naive criterion?
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What about...?

Question

e What about non-linear differential equations?
e What about a more naive criterion?

> (Stanley) Is there a criterion in terms of the coefficients of the
Taylor expansion of a solution?
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Eisenstein’s last theorem

Theorem (Eisenstein, 1852)

Suppose f(z) = > a,z" € Q||
exists N such thatall a, € Z |

N

]] is algebraic over Q(z). Then there

.

Z|=

Gotthold Eisenstein
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A mystery




A mystery

“The most important applications of the theorems thus obtained | have
made to cases in which the algebraic functions are defined as
integrals of differential equations, and these differential equations are
suitable for simple series expansions, whereas a perhaps very
complicated closed-form expression remains entirely unknown and,
for the present purpose, can quite properly be left out of
consideration. The detailed investigations concerning this may be
reserved for a future communication.”
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Eisenstein’s last theorem

Theorem (Eisenstein, 1852)

Suppose f(z) = > ap,z" € Q[
exists N such thatall a, € Z |

N

]] is algebraic over Q(z). Then there
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Eisenstein’s last theorem
Theorem (Eisenstein, 1852)

Suppose f(z) = > ap,z" € Q[
exists N such that all a, € Z [

N

]] is algebraic over Q(z). Then there

].

Z|=

Question

Does this characterize algebraic functions



Eisenstein’s last theorem

Theorem (Eisenstein, 1852)

Suppose f(z) = > ap,z" € Q[[z]] is algebraic over Q(z). Then there

exists N such that all a, € Z [N]

Question

Does this characterize algebraic functions among solutions to
algebraic differential equations?



Eisenstein’s last theorem

Theorem (Eisenstein, 1852)

Suppose f(z) =Y a,z" € Q[[z]] is algebraic over Q(z). Then there

exists N such that all a, € Z [N]

Question
Does this characterize algebraic functions among solutions to

algebraic differential equations?

Answer
No.
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Eisenstein’s last theorem

Theorem (Eisenstein, 1852)

Suppose f(z) =Y a,z" € Q[[z]] is algebraic over Q(z). Then there

exists N such that all a, € Z [N]

Question

Does this characterize algebraic functions among solutions to
algebraic differential equations?

Answer

No. 0 . - N2, g
F(Z):i/o \/x(l—i)(l—zx)zz<2n> ()

n=0

is not algebraic and satisfies
41— 2)F" +4(1 = 22)F — F=0.



The conjecture

Conjecture

Suppose f(z) = Y anz" € Q[[z]] satisfies
") = G(z,/(z), -, (" V(2)),

where G € Q(z,yo, - ,yn—1) is defined at (0,f(0), - - -

Then the following are equivalent:

,£7=1(0)).
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") = G(z,/(z), -, (" V(2)),
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The conjecture

Conjecture

Suppose f(z) = Y anz" € Q[[z]] satisfies
") = G(z,/(z), -, (" V(2)),

where G € Q(z,yo, - ,yn—1) is defined at (0,f(0), - - -

Then the following are equivalent:
1. fis algebraic over Q(z).
2. There exists N such that all a, € Z [%]

3. There exists w : Primes — Z with lim,, %

20,215 s Au(p) € Lp)

for almost all p.

,£7=1(0)).

= 0o such that
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Elliptic integrals, modular forms, ...

Theorem (Lam-L-)

Let zo € Q\ {0, 1}. Suppose F(z) = > 2y an(z — z0)" is non-zero
and satisfies
4z(1 — 2)F" +4(1 — 22)F — F = 0.
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Elliptic integrals, modular forms, ...

Theorem (Lam-L-)

Let zo € Q\ {0, 1}. Suppose F(z) = > 2y an(z — z0)" is non-zero
and satisfies
4z(1 — 2)F" +4(1 — 22)F — F = 0.

Then there are infinitely many primes appearing in the denominators
of the a,,.
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Elliptic integrals, modular forms, ...

Theorem (Lam-L-)

Let zo € Q\ {0, 1}. Suppose F(z) = > 2y an(z — z0)" is non-zero
and satisfies
4z(1 — 2)F" +4(1 — 22)F — F = 0.

Then there are infinitely many primes appearing in the denominators
of the a,,.

Example

- 2071973 - 584141735992051147 129
267

5.7-13-23.29 T3
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Elliptic integrals, modular forms, ...

Theorem (Lam-L-)

Let zo € Q\ {0, 1}. Suppose F(z) = > 2y an(z — z0)" is non-zero
and satisfies
4z(1 — 2)F" +4(1 — 22)F — F = 0.

Then there are infinitely many primes appearing in the denominators
of the a,,.

Example

- 2071973 - 584141735992051147 ( 1 )29

267 .5.7.13 2329 T3
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Elliptic integrals, modular forms, ...

Theorem (Lam-L-)

The conjecture is true for elliptic integrals, solutions to Picard-Fuchs
equations associated to modular forms, ...



Elliptic integrals, modular forms, ...

Theorem (Lam-L-)

The conjecture is true for elliptic integrals, solutions to Picard-Fuchs
equations associated to modular forms, ...

Precise statement: the conjecture is true for differential equations in
the tensor category generated by Gauss-Manin connections of families
of genus one curves.



Elliptic integrals, modular forms, ...

Theorem (Lam-L-)

The conjecture is true for elliptic integrals, solutions to Picard-Fuchs
equations associated to modular forms, ...

Precise statement: the conjecture is true for differential equations in
the tensor category generated by Gauss-Manin connections of families
of genus one curves.

Example

1.
1 /1 dx

™ Jo VX1 —x)(1 — zx)

F(z) =




Elliptic integrals, modular forms, ...

Theorem (Lam-L-)

The conjecture is true for elliptic integrals, solutions to Picard-Fuchs
equations associated to modular forms, ...

Precise statement: the conjecture is true for differential equations in
the tensor category generated by Gauss-Manin connections of families
of genus one curves.

Example
1. .
1 dx
F(z) = —
(2) T Jo /x(1—x)(1—2zx)
2.
c  6(°-32) 0°G | 7*—64 OGC 1

a6+ t(2 —64) Ot N (2 — 64) Ot " (e - 64)
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Digression: differential equations in
algebraic geometry



Where do differential equations come from?
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Slogan

Differential equations come from topological invariants of algebraic
varieties.
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l a family of smooth projective varieties



Where do differential equations come from?

Slogan

Differential equations come from topological invariants of algebraic
varieties.

X
l a family of smooth projective varieties

S

Topology of fibers is locally constant (Ehresmann)



Where do differential equations come from?

X
l a family of smooth projective varieties
)
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Cohomology ~+ Picard-Fuchs equations.
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Where do differential equations come from?

X
l a family of smooth projective varieties
S

Cohomology ~~ Picard-Fuchs equations.

Definition

A Picard-Fuchs equation is a differential equation satisfied by a period

integral
F(s) = /ws.
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Where do differential equations come from?

X
l a family of smooth projective varieties
S

Cohomology ~+ Picard-Fuchs equations.

Definition

A Picard-Fuchs equation is a differential equation satisfied by a period

integral
F(s) = / .

Here o is a k-cycle on X; and wy is a family of (algebraic) differential
k-forms on X;.
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Where do differential equations come from?

X
l a family of smooth projective varieties
S

Cohomology ~+ Picard-Fuchs equations.

Definition

A Picard-Fuchs equation is a differential equation satisfied by a period

integral
F(s) = / .

Here o is a k-cycle on X; and wy is a family of (algebraic) differential

k-forms on X;.
Initial conditions: HX(Xo, C).
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Example

where

D =121(24 1) (22)°~222(438 (2% ) *+2004 (2 L) " +1710 (2% ) *+950 (L) *+275 (2L ) +33) (2L )
—7% (839313 (72 +2471661 (L) +4037556 (-2 ) +4497304 (7L ) +3093948 (7 L) *+ 1158740 (7.2 ) +180048)
—273 (5746754 (24L) *+26470666 (2 &) +51184224 (2.4 ) +50480470 (2 £ ) *+26205335 (2L ) * 6684843 (2 £) +604098)
—47'(4081884(2.2) °+14804484 (2.2 )+ 18825903 (24 ) ' 17472030 (L)’ 3698839 (2 2L ) "~ 4099839 (2 L ) ~993618)
+562° (29592 (2.2 +255960 (2.2 )" +806448 (7.2 )  + 1272787 (2.L)* +1088403 (2 L ) *+483431 (2 & ) +87609)

156825 (428 +5) (224 +3) (122 +3) (24 +1)°.
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What is a linear differential equation?

Let X be a complex manifold. Analytic continuation of solutions gives
an equivalence of categories

{“linear differential equations on X"} = {71 (X)-representations}
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What is a linear differential equation?
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Example: X = C\ {0}, ODE:

(;’Z . i) f(z) =0
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What is a linear differential equation?

Let X be a complex manifold. Analytic continuation of solutions gives
an equivalence of categories

{flat vector bundles on X} = {7 (X)-representations}

Example: X = C\ {0}, ODE:

(;’Z . i) f(z) =0

Solutions: f(z) = cz* = cexp(alog z)
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What is a linear differential equation?

Let X be a complex manifold. Analytic continuation of solutions gives
an equivalence of categories

{flat vector bundles on X} = {7 (X)-representations}

Example: X = C\ {0}, ODE:

(;’Z . i) f(z) =0

Solutions: f(z) = cz* = cexp(alog z)
Analytic continuation about 0:

f(z) > e*™af(7)

22



What is a linear differential equation?

Example: X = C \ {0}, ODE:

(6 1)) -

23



What is a linear differential equation?
Example: X = C \ {0}, ODE:

(6 1) (6)-

Solutions: f1(z) = ¢y log(z) + c2,f2(z) = c1
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What is a linear differential equation?

Example: X = C \ {0}, ODE:
¢ 1)E)-

Solutions: f1(z) = ¢y log(z) + c2,f2(z) = c1
Analytic continuation about 0:

(662)~ (0 *7) (i)
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What is a linear differential equation?

Example: X = C \ {0}, ODE:
¢ 1)E)-

Solutions: f1(z) = ¢y log(z) + c2,f2(z) = c1
Analytic continuation about 0:

(662)~ (0 *7) (i)

Upshot: If you have a way of associating a vector space to a complex
manifold, it should give you linear differential equations.
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What is a (non-linear) differential equation?
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What is a (non-linear) differential equation?

Regina Valkenborgh, University of Hertfordshire
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What is a (non-linear) differential equation?

Regina Valkenborgh, University of Hertfordshire

Answer

A differential equation is a foliation.
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Where do differential equations come from?

a family of smooth projective varieties

N<——Xx
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Where do differential equations come from?

X
l a family of smooth projective varieties
)

Rep(m1(Xs), GL,(C)) ~» Isomonodromy differential equations.
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Rep(m1(Xs), GL,(C)) ~» Isomonodromy differential equations.

e Space of initial conditions:
AMyr(Xo) = flat bundles (differential equations) on Xp.
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Where do differential equations come from?

X
l a family of smooth projective varieties
)

Rep(m1(Xs), GL,(C)) ~» Isomonodromy differential equations.

e Space of initial conditions:
AMyr(Xo) = flat bundles (differential equations) on Xp.

e Solutions: Families of flat bundles (&5, V) (differential equations)
whose associated monodromy representation isn’t changing.

25



Example of isomonodromy ODE

X; = CPY\ {\1,---, \,}; ODE with regular singularities:

d A; -
<dz + Z - /\i> f(z) = 0 where A; € Mat,«,(C), ZA/ =0

i

26



Example of isomonodromy ODE

X, = CP! \ {A1,--, \n}; ODE with regular singularities:

d A >
(dz + Z o /\i> f(z) = 0 where A; € Mat,«,(C), ZA, =0

i

Question

As one varies the A;, how to vary the A; so that the monodromy
representation of this ODE doesn’t change?
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Example of isomonodromy ODE

Xs = CP'\ {\1,--- , \,}; ODE with regular singularities:

d A >
(dz + Z o )\i> f(z) = 0 where A; € Mat,«,(C), Z/\,- =0

i

Question

As one varies the A;, how to vary the A; so that the monodromy
representation of this ODE doesn’t change?

Answer: the Schlesinger system

oA [ALA]
YRR
"\ O0A;

v

ifi )

0
i=1
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Results



nNn<—-Xx

Picard-Fuchs equations

a family of smooth projective varieties
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Picard-Fuchs equations

X
l a family of smooth projective varieties

S

Recall: the associated Picard-Fuchs equation is the differential
equation satisfied by F(s) = | w;. Initial conditions correspond to
oo € H*(Xo,C).
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Picard-Fuchs equations

X

l a family of smooth projective varieties

S
Recall: the associated Picard-Fuchs equation is the differential
equation satisfied by F(s) = [ ws. Initial conditions correspond to
o € H*(XO./(C).
Theorem (Lam-L-)

Suppose F(s) = [ ws is the (formal) solution to a Picard-Fuchs
equation corresponding to oo € H?*(Xg, C), with o the class of an
algebraic cycle of codimension k. Then the following are equivalent:

1. Fis algebraic.
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X

l a family of smooth projective varieties

S
Recall: the associated Picard-Fuchs equation is the differential
equation satisfied by F(s) = [ ws. Initial conditions correspond to
og € H*(X()./C).
Theorem (Lam-L-)

Suppose F(s) = [ ws is the (formal) solution to a Picard-Fuchs

equation corresponding to oo € H?*(Xg, C), with o the class of an

algebraic cycle of codimension k. Then the following are equivalent:
1. Fis algebraic.

2. The coefficients of the Taylor expansion of F about 0 € S lie in a
finitely-generated Z-algebra (e.g. Z[x]).
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Isomonodromy equations
X

l a family of smooth projective varieties

S

Recall: the associated isomonodromy equation has
e Solutions: families of flat bundles (differential equations) with
locally constant monodromy
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Isomonodromy equations
X

l a family of smooth projective varieties
)

Recall: the associated isomonodromy equation has

e Solutions: families of flat bundles (differential equations) with
locally constant monodromy

e Initial conditions: (&y, Vo) € #4r(Xp), i.e. differential equations
on Xp.
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[somonodromy equations
X

l a family of smooth projective varieties

S
Recall: the associated isomonodromy equation has
e Solutions: families of flat bundles (differential equations) with
locally constant monodromy
e Initial conditions: (&y, Vo) € #4r(Xp), i.e. differential equations
on Xp.

Theorem (Lam-L-)

Suppose F(s) is a (formal) solution to an isomonodromy equation
with initial condition (&, Vo) € Mqr(Xo) a Picard-Fuchs equation.
Then the following are equivalent:

1. Fis algebraic.
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An example: Painlevé VI

Py 1 11 LN\ 11 1 \dy
de2 2\y y—1 y—t)\dt t t—1 y—t) dt
yly =Dy —1) t t—1 tt—1)
o — 5

Iy e A v V) vy

+
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An example: Painlevé VI

Py 11 1 1 dy\? (1 1 1\ dy
— =t —+— (2] - (+—+— =2
dt 2\y y—-1 y—t dt t t—1 y—t) dt

y(y —1)(y —t) t t—1 t(t—1)
(- 1)? (“”ﬁ”(y—l)z”(y—tP)

=2 8( 1 2-+ L 3323732092 (1 13_+
W=273 2 35.52.7.11-13 2

+
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An example: Painlevé VI

Py 11 1 1 dy\? (1 1 1\ dy
— =t —+— (2] - +—+—) =2
dt 2\y y—-1 y—t dt t t—1 y—t) dt

y(y —1)(y —t) t t—1 t(t—1)
(- 1)? (“”ﬁ”(y—l)z”(y—w)

(t)_2_§ L1 2+ L 3323732092 (1 13+
W=273 2 355271113 2

+
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Proof input

Picard-Fuchs equation:
e Hodge theory
e Fontaine-Lafaille theory
[somonodromy differential equations:
e Non-abelian Hodge theory over C (Simpson, ...)

e Non-abelian Hodge theory in positive characteristic
(Ogus-Vologodsky, Schepler)

e Higgs-de Rham flow (Faltings, Lan-Sheng-Zuo,
Esnault-Groechenig)
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Proof input

Picard-Fuchs equation:
e Hodge theory
e Fontaine-Lafaille theory
[somonodromy differential equations:
e Non-abelian Hodge theory over C (Simpson, ...)

e Non-abelian Hodge theory in positive characteristic
(Ogus-Vologodsky, Schepler)

e Higgs-de Rham flow (Faltings, Lan-Sheng-Zuo,
Esnault-Groechenig)

Key idea: arithmetic version of the variational Hodge conjecture (and
its non-abelian analogue)
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Relationship to the p-curvature conjecture

Proposition (Lam-L-, Lawrence-L-)

Proving the main conjecture for isomonodromy differential equations
(and arbitrary initial conditions) implies the Grothendieck-Katz
p-curvature conjecture in general.

w
w



The conjecture

Conjecture

Suppose f(z) = Y anz" € Q[[z]] satisfies
") = G(z,/(z), -, (" V(2)),

where G € Q(z,yo, - ,yn—1) is defined at (0,f(0), - - -

Then the following are equivalent:
1. fis algebraic over Q(z).
2. There exists N such that all a, € Z [%]

3. There exists w : Primes — Z with lim,, %

20,215 s Au(p) € Lp)

for almost all p.

,£7=1(0)).

= 0o such that



