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When does a differential equation have algebraic
solutions? (Fuchs, 1875)

Lazarus Fuchs,
Universitätsbibliothek Heidelberg

Algebraic: Satisfies a polynomial whose coefficients are rational
functions.

Example

F(z) =
√
1 + z is algebraic: satisfies F2 − z− 1 = 0.

ez, log(z) are not algebraic
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Hypergeometric functions

F(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)nn!

zn where (a)n = a(a+1)(a+2) · · · (a+n−1)

satisfies

z(1− z)
d2F
dz2

+ [c− (a+ b+ 1)z]
dF
dz

− ab F = 0
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d2F
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dF
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− ab F = 0

Hermann Schwarz, Wikimedia commons
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An example

(
d
dz

− a
z

)
f(z) = 0

Solutions: f(z) = cza

Solutions algebraic ⇐⇒ a ∈ Q
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An example, cont.

Riemann surfaces for z1/3 and z
√
2
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The Grothendieck-Katz p-curvature conjecture

Conjecture (Grothendieck-Katz)

Let A ∈ Matr×r(Q(z)). All solutions to(
d
dz

− A

)
f⃗(z) = 0

are algebraic ⇐⇒ (
d
dz

− A

)p

≡ 0 mod p

for all but finitely many primes p.
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An example, continued

Want to show: (
d
dz

− a
z

)p

≡ 0 mod p

for almost all primes p iff a is rational.

(
d
dz

− a
z

)p

zn = (a− n)(a− n− 1) · · · (a− n− p+ 1)zn−p

This vanishes mod p iff a = 0, 1, · · · , p− 1 mod p.
This happens for almost all p iff a ∈ Q, by the Chebotarev density
theorem.
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Known cases

The Grothendieck-Katz p-curvature conjecture is known for:

• Picard-Fuchs equations (Katz, 1972)

• Differential equations with solvable monodromy
(Chudnovsky-Chudnovsky, André, Bost)

Beautiful work by Esnault-Kisin, Esnault-Groechenig, Farb-Kisin,
Shankar, Shankar-Patel-Whang, Tang, · · ·
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What about...?

Question

• What about non-linear differential equations?

• What about a more naive criterion?
▶ (Stanley) Is there a criterion in terms of the coefficients of the

Taylor expansion of a solution?
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Eisenstein’s last theorem

Theorem (Eisenstein, 1852)

Suppose f(z) =
∑

anzn ∈ Q[[z]] is algebraic over Q(z). Then there
exists N such that all an ∈ Z

[
1
N

]
.

Gotthold Eisenstein
11



A mystery

“The most important applications of the theorems thus obtained I have
made to cases in which the algebraic functions are defined as
integrals of differential equations, and these differential equations are
suitable for simple series expansions, whereas a perhaps very
complicated closed-form expression remains entirely unknown and,
for the present purpose, can quite properly be left out of
consideration. The detailed investigations concerning this may be
reserved for a future communication.”
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Eisenstein’s last theorem

Theorem (Eisenstein, 1852)

Suppose f(z) =
∑

anzn ∈ Q[[z]] is algebraic over Q(z). Then there
exists N such that all an ∈ Z

[
1
N

]
.

Question

Does this characterize algebraic functions among solutions to
algebraic differential equations?

Answer

No.

F(z) =
1

π

∫ 1

0

dx√
x(1− x)(1− zx)

=
∞∑
n=0

(
2n
n

)2 ( z
16

)n

is not algebraic and satisfies

4z(1− z)F′′ + 4(1− 2z)F′ − F = 0.
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The conjecture

Conjecture

Suppose f(z) =
∑

anzn ∈ Q[[z]] satisfies

f(n) = G(z, f(z), · · · , f(n−1)(z)),

where G ∈ Q(z, y0, · · · , yn−1) is defined at (0, f(0), · · · , f(n−1)(0)).
Then the following are equivalent:

1. f is algebraic over Q(z).

2. There exists N such that all an ∈ Z
[
1
N

]
.

3. There exists ω : Primes → Z with limp→∞
ω(p)
p = ∞ such that

a0, a1, · · · , aω(p) ∈ Z(p)

for almost all p.
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Results



Elliptic integrals, modular forms, ...

Theorem (Lam-L–)

Let z0 ∈ Q \ {0, 1}. Suppose F(z) =
∑∞

n=0 an(z− z0)n is non-zero
and satisfies

4z(1− z)F′′ + 4(1− 2z)F′ − F = 0.

Then there are infinitely many primes appearing in the denominators
of the an.

Example

F(z) = 1 +
9

16

(
z −

1

3

)2

+ · · · −
327 · 2071973 · 584141735992051147   

267 · 5 · 7 · 13 · 23 · 29

(
z −

1

3

)29

+ · · ·

16
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Elliptic integrals, modular forms, ...

Theorem (Lam-L–)

The conjecture is true for elliptic integrals, solutions to Picard-Fuchs
equations associated to modular forms, ...

Precise statement: the conjecture is true for differential equations in
the tensor category generated by Gauss-Manin connections of families
of genus one curves.

Example

1.

F(z) =
1

π

∫ 1

0

dx√
x(1− x)(1− zx)

2.

∂3G
∂t3

+
6
(
t2 − 32

)
t
(
t2 − 64

) ∂2G
∂t2

+
7t2 − 64

t2
(
t2 − 64

) ∂G
∂t

+
1

t
(
t2 − 64

) G = 0.
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Digression: differential equations in
algebraic geometry



Where do differential equations come from?

Slogan

Differential equations come from topological invariants of algebraic
varieties.

X

��
a family of smooth projective varieties

S

Topology of fibers is locally constant (Ehresmann)
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Where do differential equations come from?

X

��
a family of smooth projective varieties

S

Cohomology⇝ Picard-Fuchs equations.

Definition

A Picard-Fuchs equation is a differential equation satisfied by a period
integral

F(s) =
∫
σ
ωs.

Here σ is a k-cycle on Xs and ωs is a family of (algebraic) differential
k-forms on Xs.
Initial conditions: Hk(X0,C).

20
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Example

DF = 0

where

D = 121
(
z d
dz−1

)(
z d
dz

)5−22z
(
438

(
z d
dz

)5
+2094

(
z d
dz

)4
+1710

(
z d
dz

)3
+950

(
z d
dz

)2
+275

(
z d
dz

)
+33

)(
z d
dz

)
−z2

(
839313

(
z d
dz

)6
+2471661

(
z d
dz

)5
+4037556

(
z d
dz

)4
+4497304

(
z d
dz

)3
+3093948

(
z d
dz

)2
+1158740

(
z d
dz

)
+180048

)
−2z3

(
5746754

(
z d
dz

)6
+26470666

(
z d
dz

)5
+51184224

(
z d
dz

)4
+50480470

(
z d
dz

)3
+26295335

(
z d
dz

)2
+6684843

(
z d
dz

)
+604098

)
−4z4

(
4081884

(
z d
dz

)6
+14894484

(
z d
dz

)5
+18825903

(
z d
dz

)4
+7472030

(
z d
dz

)3−3698839
(
z d
dz

)2−4099839
(
z d
dz

)
−993618

)
+56z5

(
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What is a linear differential equation?

Let X be a complex manifold. Analytic continuation of solutions gives
an equivalence of categories

{“linear differential equations on X”} ∼→ {π1(X)-representations}

Example: X = C \ {0}, ODE:(
d
dz

− a
z

)
f(z) = 0

Solutions: f(z) = cza = c exp(a log z)
Analytic continuation about 0:

f(z) 7→ e2πiaf(z)
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What is a linear differential equation?

Example: X = C \ {0}, ODE:( d
dz −1/z
0 d

dz

)(
f1(z)
f2(z)

)
= 0

Solutions: f1(z) = c1 log(z) + c2, f2(z) = c1
Analytic continuation about 0:(

f1(z)
f2(z)

)
7→

(
1 2πi
0 1

)(
f1(z)
f2(z)

)

Upshot: If you have a way of associating a vector space to a complex
manifold, it should give you linear differential equations.
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What is a (non-linear) differential equation?

Regina Valkenborgh, University of Hertfordshire

Answer

A differential equation is a foliation.
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Where do differential equations come from?

X

��
a family of smooth projective varieties

S

Rep(π1(Xs),GLr(C))⇝ Isomonodromy differential equations.

• Space of initial conditions:
MdR(X0) := flat bundles (differential equations) on X0.

• Solutions: Families of flat bundles (Es,∇s) (differential equations)
whose associated monodromy representation isn’t changing.
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Example of isomonodromy ODE

Xs = CP1 \ {λ1, · · · , λn}; ODE with regular singularities:(
d
dz

+
∑ Ai

z− λi

)
f⃗(z) = 0 where Ai ∈ Matr×r(C),

∑
i

Ai = 0

Question

As one varies the λi, how to vary the Ai so that the monodromy
representation of this ODE doesn’t change?

Answer: the Schlesinger system


∂Ai

∂λj
=

[Ai,Aj]

λi − λj
if i 6= j

n∑
i=1

∂Ai

∂λj
= 0
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Results



Picard-Fuchs equations

X

��
a family of smooth projective varieties

S

Recall: the associated Picard-Fuchs equation is the differential
equation satisfied by F(s) =

∫
σ ωs. Initial conditions correspond to

σ0 ∈ H∗(X0,C).

Theorem (Lam-L–)

Suppose F(s) =
∫
σ ωs is the (formal) solution to a Picard-Fuchs

equation corresponding to σ0 ∈ H2k(X0,C), with σ0 the class of an
algebraic cycle of codimension k. Then the following are equivalent:

1. F is algebraic.

2. The coefficients of the Taylor expansion of F about 0 ∈ S lie in a
finitely-generated Z-algebra (e.g. Z[ 1N ]).
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Example

DF = 0

where

D = 121
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Isomonodromy equations
X

��
a family of smooth projective varieties

S

Recall: the associated isomonodromy equation has
• Solutions: families of flat bundles (differential equations) with
locally constant monodromy

• Initial conditions: (E0,∇0) ∈ MdR(X0), i.e. differential equations
on X0.

Theorem (Lam-L–)

Suppose F(s) is a (formal) solution to an isomonodromy equation
with initial condition (E0,∇0) ∈ MdR(X0) a Picard-Fuchs equation.
Then the following are equivalent:

1. F is algebraic.

2. The coefficients of the Taylor expansion of F about 0 ∈ S lie in a
finitely-generated Z-algebra (e.g. Z[ 1N ]).
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An example: Painlevé VI
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(y− 1)2
+ δ

t(t− 1)

(y− t)2

)

y(t) = 2− 8

3

(
z− 1

2

)2

+ · · ·+ 3323732992

38 · 52 · 7 · 11 · 13
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z− 1

2

)13

+ · · ·
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Proof input

Picard-Fuchs equation:

• Hodge theory

• Fontaine-Lafaille theory

Isomonodromy differential equations:

• Non-abelian Hodge theory over C (Simpson, ...)

• Non-abelian Hodge theory in positive characteristic
(Ogus-Vologodsky, Schepler)

• Higgs-de Rham flow (Faltings, Lan-Sheng-Zuo,
Esnault-Groechenig)

Key idea: arithmetic version of the variational Hodge conjecture (and
its non-abelian analogue)
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Relationship to the p-curvature conjecture

Proposition (Lam-L–, Lawrence-L–)

Proving the main conjecture for isomonodromy differential equations
(and arbitrary initial conditions) implies the Grothendieck-Katz
p-curvature conjecture in general.
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The conjecture

Conjecture

Suppose f(z) =
∑

anzn ∈ Q[[z]] satisfies

f(n) = G(z, f(z), · · · , f(n−1)(z)),

where G ∈ Q(z, y0, · · · , yn−1) is defined at (0, f(0), · · · , f(n−1)(0)).
Then the following are equivalent:

1. f is algebraic over Q(z).

2. There exists N such that all an ∈ Z
[
1
N

]
.

3. There exists ω : Primes → Z with limp→∞
ω(p)
p = ∞ such that

a0, a1, · · · , aω(p) ∈ Z(p)

for almost all p.
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