UC Davis Mathematics

Mathematical Analytics & Operations Research Major

Major Requirements and Planning

You can find electronic, interactive degree requirements listed online in the Degree Worksheets portion of OASIS.

You may also use the academic plan sheets below, which include all your major requirements, prerequisites, and quarters that classes are offered.

Printable Degree Worksheet

Sample 4 Year Plan

NOTE: These samples do not include the required courses outside of Mathematics, which varies for each major/degree type.

Year 1
Fall: 21A
Winter: 21B, ECN 1A
Spring: 21C, ECN 1B
Year 2
Fall: 21D, ENG 6
Winter: 22A, 108
Spring: 22B, 127A
Year 3
Fall: 127B, STA 32A, Enrichment B
Winter: 127C, 135A
Spring: 135B, 167/Enrichment A
Year 4
Fall: 150A, 128A
Winter: 168, Enrichment A, Enrichment B
Spring: 160, capstone

Math Department Weekly Newsletter

Interested in getting updates about Math Department undergraduate events and opportunities?

Once you subscribe, you will receive an email from MailChimp asking you to confirm your subscription to the list. You can unsubscribe at any time. If you have any questions or comments, please contact the list moderator, Cydney Matteson at studentservices@math.ucdavis.edu

Please only submit your information once; note that the email will be your only confirmation.

Learning Outcomes and Assessment

The Mathematical Analytics and Operations Research major provides training for students planning careers in any field that requires mathematical methods. For example: the discovery of meaningful patterns in high-dimensional data; scientific approach for making decisions based on models that optimize the decision parameters such as cost, time-to-completion, transportation logistics, scheduling of tasks, etc.; data visualization to communicate and present decisions to others.

Graduates of our program will distinguish themselves for their problem-solving skills, computational and modeling ability, and excellent communication skills. These abilities allow them to pursue scientific or technical careers in industry, education, or government. In addition, their strong analytic skills prepare them well to continue with graduate education or to participate in research and development, and other creative and innovative efforts in science, arts and humanities, engineering, and business.

Upon graduation, Mathematical Analytics and Operations Research majors should have a set of fundamental competencies:

  1. Have a mental habit of logical thinking, and familiarity with the tactics of problem solving. Students will be able to estimate the solution to a problem, apply appropriate techniques to arrive at a solution, test the correctness of the solution, and interpret their results.
  2. Demonstrate a good understanding of rigorous mathematical argument that justifies decisions or analysis. Students will be able to write well-organized and logical mathematical arguments. Graduates will have the ability to ask questions and seek answers when performing quantitative analysis. Graduates will recognize the need for intellectual curiosity and life-long learning.
  3. An ability to compute with, identify, formulate, abstract, and solve mathematical problems that using a tools from a variety of mathematical areas, including optimization, discrete mathematics, probability, and understanding how the relate to problems from other areas of science, engineering and management.
  4. Solid understanding of the many ways applied mathematics can be used to extract data information and for making decisions.
  5. Familiarity with technology, software, and algorithmic processes necessary in modeling or applications. Confidence with computers and technology necessary to do decision analysis. Graduates will be able to use computers in research, information acquisition and processing and use available software as a tool in their work.
  6. An ability to understand and design mathematical and statistical models for, and analyze data from, a wide variety of sources. An ability to use visualization and statistics tools to expose ideas and solutions.
  7. An ability to communicate effectively and to function well on multi-disciplinary teams.

Performance Assessment

Our courses provide and test the necessary content of knowledge and skills that lead students to the desired seven educational outcomes above.

To assess the proficiency in the seven learning outcomes listed above, the department intends to require all majors to take a capstone course on Problem Solving (MAT 189) in which students study a wide selection of topics from all areas of mathematics and its applications. However, this has not been approved on the campus level yet. Students are expected to use their knowledge acquired from other courses to analyze problems, devise their solution and present their work in writing and in oral presentations before the class. The instructor in charge of the course will mark a rubric when he/she will judge whether a particular goal has been demonstrated; thus the performance assessment will be responsibility of the instructor of this course. The resulting records will be collected and reviewed by the Undergraduate Programming Committee (UPC).

Several educational activities outside the traditional classroom, such as independent research, provide students good opportunity to demonstrate that they have attained the student learning goals. For this reason, students participating in these activities will be excused from having to enroll in MAT 189. These educational activities include: performing at least one semester of undergraduate research, writing an honors thesis under faculty mentorship and enrolling in one quarter of MAT 194; doing an internship in applied mathematics and enrolling in one quarter of MAT 192; successfully completing a special topics class MAT 180, fulfilling the requirements of the single-subject teaching credential, or achieving a good performance in a graduate admission exam such as the GRE, MCAT, LSAT, CSET, Actuarial examination, etc.

Every three years UPC will thoroughly evaluate the status of our major in terms of how well students are reaching learning goals. The evaluation will be based on the MAT189 rubrics, the GPA of students in our required classes, and comments from students and faculty. UPC will monitor recruitment, retention and advancement through the program of the majors. The Committee will report the results of the assessment to the entire Mathematics department with recommendations on how the major could be strengthened.