Montesinos knots, Hopf plumbings and L-space surgeries

Kenneth Baker ‡ Allison Moore†

†Rice University
‡University of Miami

October 24, 2014
A longstanding question

Which knots admit lens space surgeries?

1971 (Moser)
1977 (Bailey-Rolfsen)
1980 (Fintushel-Stern)
1990 (Berge)

\[\alpha = p\mu + q\lambda \]

Cyclic Surgery Theorem (CGLS) + Berge’s construction
= “The Berge Conjecture.”
L-spaces

(Ozsváth-Szabó, Rasmussen): Knot Floer homology.

\[K \subset Y \hookrightarrow \cdots \subset \mathcal{F}_{i-1} C \subset \mathcal{F}_i C \subset \cdots \]

\[H_\ast(\mathcal{F}_i C/\mathcal{F}_{i-1} C) \]

\[\hat{\text{HFK}}(K) = \bigoplus_{m,s} \hat{\text{HFK}}_m(S^3, K, s). \]

- \[\Delta_K(t) = \sum_s \chi(\hat{\text{HFK}}(K, s)) \cdot t^s \]
- A \(\mathbb{Q} HS^3 \) \(Y \) is an **L-space** if \(|H_1(Y; \mathbb{Z})| = \text{rank} \hat{\text{HF}}(Y) \).
 Ex: \(S^3 \), all lens spaces, 3-manifolds with finite \(\pi_1 \).
Motivating question revisited

Question

Which knots admit lens space surgeries?

becomes

Question

Which knots admit L-space surgeries?
Theorem (Ozsváth-Szabó)

If K *admits an L-space surgery, then for all* $s \in \mathbb{Z}$,

$\widehat{HF}(K, s) \cong \mathbb{F}$ *or 0 (and some other conditions on Maslov grading).*
Theorem (Ozsváth-Szabó)

If \(K \) admits an L-space surgery, then for all \(s \in \mathbb{Z} \),
\[\hat{\text{HFK}}(K, s) \cong \mathbb{F} \text{ or } 0 \] (and some other conditions on Maslov grading).

Corollary (Determinant-genus inequality)

If \(\det(K) > 2g(K) + 1 \), then \(K \) is not an L-space knot.
L-space surgery obstructions

Theorem (Ozsváth-Szabó)

If \(K \) admits an L-space surgery, then for all \(s \in \mathbb{Z} \),
\[
\widehat{HFK}(K, s) \cong \mathbb{F} \text{ or } 0 \text{ (and some other conditions on Maslov grading).}
\]

Corollary (Determinant-genus inequality)

If \(\det(K) > 2g(K) + 1 \), then \(K \) is not an L-space knot.

Proof.

If \(K \) is an L-space knot, then \(|a_s| \leq 1 \ \forall \ \text{coefficients } a_s \text{ of } \Delta_K(t) \).

Then,
\[
\det(K) = |\Delta_K(-1)| \leq \sum_s |a_s| \leq 2g(K) + 1.
\]
Theorem (Ni, Ghiggini)

\(K \) is fibered if and only if \(\hat{\text{HFK}}(K, g(K)) \cong F \).

Thus \(L \)-space knots are fibered.
More geometric obstructions

Theorem (Ni, Ghiggini)

\(K \) is fibered if and only if \(\widehat{\text{HFK}}(K, g(K)) \cong F \).

Thus \(L \)-space knots are fibered.

Theorem (Hedden)

An \(L \)-space knot \(K \) supports the tight contact structure; equivalently, an \(L \)-space knot is strongly quasipositive.
Theorem (Baker-M.)

Among the Montesinos knots, the only L-space knots are

- the pretzel knots $P(-2, 3, 2n + 1)$ for $n \geq 0$,
- and the torus knots $T(2, 2n + 1)$ for $n \geq 0$.

Montesinos knots

\[K = M\left(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}, \ldots, \frac{\beta_r}{\alpha_r} \mid e\right) \]

Figure: \(M(\frac{3}{4}, -\frac{2}{5}, \frac{1}{3} \mid 3) \).

Where \(\alpha_i, \beta_i, e \in \mathbb{Z} \) and \(\alpha_i > 1, |\beta_i| < \alpha_i \), and \(\gcd(\alpha_i, \beta_i) = 1 \).
Ingredients for proof

We need only consider fibered, non-alternating Montesinos knots,

\[K = M \left(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}, \ldots, \frac{\beta_r}{\alpha_r} \mid e \right) \]

and we assume \(r \geq 3 \), because \(r \leq 2 \) implies \(K \) is a two-bridge link.

Theorem (Ozsváth-Szabó)

An alternating knot admits an L-space surgery if and only if \(K \simeq T(2, 2n + 1) \), some \(n \in \mathbb{Z} \).
(Hirasawa-Murasugi): Classified fibered Montesinos knots with their fibers. For $K = M\left(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}, \ldots, \frac{\beta_r}{\alpha_r} \mid e\right)$,

$$\frac{\beta_i}{\alpha_i} = \frac{1}{x_1 - \frac{1}{x_2 - \frac{1}{\ddots - \frac{1}{x_m}}}}$$

$$S_i := \left[x_1, \ldots, x_m\right]$$

have two cases of S_i:

1. α_i are all odd \rightarrow strict continued fractions.
2. α_1 is even, α_i is odd for $i > 1$ \rightarrow even continued fractions.
Example: odd case

Each β_i/α_i has a strict continued fraction:

$$S_i = [2a_1^{(i)}, b_1^{(i)}, \ldots, 2a_q^{(i)}, b_q^{(i)}]$$

Hirasawa-Mursagi give strong restrictions on e, S_1, \ldots, S_m when M is fibered.

Figure: Image of odd-type Seifert surface borrowed from Hirasawa-Murasugi.
Open books for three-manifolds

\((F, \phi)\) — an open book for closed 3-manifold \(Y\).

\(L = \partial F\) is the binding.

\(F\) is the fiber surface.
Open books for three-manifolds

(F, ϕ) — an open book for closed 3-manifold Y.

$L = \partial F$ is the binding.

F is the fiber surface.

ξ — a contact structure on Y.

- Locally, $\ker \alpha$, $\alpha \wedge d\alpha \neq 0$
- (Thurston-Winkelnkemper - 1975) Every (F, ϕ) induces a contact structure.
- (Giroux - 2000) \{or. ξ on Y\}/ isotopy \leftrightarrow \{(F, \phi) for Y\} / positive stabilization
Plumbings of Hopf bands

Hopf links:

- $L^+ = \{(z_1, z_2) \in S^3 \subset \mathbb{C}^2 | z_1z_2 = 0\}$.
- $L^- = \{(z_1, z_2) \in S^3 \subset \mathbb{C}^2 | z_1\overline{z_2} = 0\}$.

Pos/neg (de)stabilization \leftrightarrow (de)plumbing of pos/neg Hopf bands.

Figure: The connected sum of a positive and negative Hopf band.
Lemma (Contact Structures Lemma)

1. *(Goodman)*:
 If $F \supset H_-$, then $\xi(F, \phi)$ is overtwisted.
Lemma (Contact Structures Lemma)

1. (Goodman): If $F \supset H_-$, then $\xi(F, \phi)$ is overtwisted.

2. (Yamamoto): If F contains a twisting loop, then $\xi(F, \phi)$ is overtwisted.
Lemma (Contact Structures Lemma)

1. (Goodman):
 If $F \supset H_-$, then $\xi(F,\phi)$ is overtwisted.

2. (Yamamoto):
 If F contains a twisting loop, then $\xi(F,\phi)$ is overtwisted.

3. (Giroux):
 If $F \supset H_+$ and
 $$(F, \phi) = (F', \phi') \ast (H_+, \pi^+)$$
 then
 $$\xi(F,\phi) \cong \xi(F',\phi').$$
Theorem (Baker-M.)

A fibered Montesinos knot that supports the tight contact structure is isotopic to either

\[M\left(\frac{-d_1}{2d_1+1}, \frac{-d_2}{2d_2+1}, \ldots, \frac{-d_r}{2d_r+1}\middle|1\right) \]

\[M\left(\frac{-m_1}{m_1+1}, \frac{-m_2}{m_2+1}, \ldots, \frac{-m_r}{m_r+1}\middle|2\right) \]

Figure: Left: odd type. Right: even type.

And its fiber is obtained from the disk by a sequence of Hopf plumbings.
Odd case

- Repeatedly apply the Contact Structures Lemma, parts 1 & 2 to identify negative Hopf bands and/or twisting loops.
- Cull these knots because they support an overtwisted contact structure.

\[b_{j-1}^{(i)} > 0 \]
\[2a_j^{(i)} = 2 \]
\[b_j^{(i)} < 0 \]

Figure: Finding negative Hopf bands in \(F \).
Odd case

- Odd fibered Montesinos knots without a H^- remain.
- Successively deplumb H^+ until a single H^+ remains.
- These knots support the tight contact structure.

$M\left(\frac{-d_1}{2d_1+1}, \frac{-d_2}{2d_2+1}, \ldots, \frac{-d_r}{2d_r+1} | 1\right)$
Lemma

Let K be an odd fibered Montesinos knot supporting the tight contact structure. Then $\det(K) > 2g(K) + 1$ unless $K = M(\frac{1}{3}, \frac{1}{3}, \frac{2}{5}|1)$.

For any $K = M\left(\frac{\beta_1}{\alpha_1}, \frac{\beta_2}{\alpha_2}, \ldots, \frac{\beta_r}{\alpha_r} | e\right)$,

$$
\det(K) = |H_1(\Sigma_2(S^3, K); \mathbb{Z})| = \left| \prod_{i=1}^{r} \alpha_i \left(e + \sum_{i=1}^{r} \frac{\beta_i}{\alpha_i} \right) \right|.
$$
For odd, fibered Montesinos knots,

\[g(K) = \frac{1}{2} \left(\sum_{i=1}^{r} b^{(i)} + |e| - 1 \right) \]

We verify \(det(K) > 2g(K) + 1 \) for such knots.
For odd, fibered Montesinos knots,

\[g(K) = \frac{1}{2} \left(\sum_{i=1}^{r} b^{(i)} + |e| - 1 \right) \]

We verify \(\det(K) > 2g(K) + 1 \) for such knots.

Finally, \(K = M\left(\frac{1}{3}, \frac{1}{3}, \frac{2}{5} \right) \mid 1 \) is the knot 10_{145}. Since

\[\Delta_{10_{145}}(t) = t^2 + t - 3 + t^{-1} + t^{-2}, \]

no odd fibered Montesinos knot admits an L-space surgery.
Even case

Similarly, pare down to the subfamily of fibered, even Montesinos knots which support the tight contact structure:

\[M(\frac{-d_1}{2d_1+1}, \frac{-d_2}{2d_2+1}, \ldots, \frac{-d_r}{2d_r+1} | 1) \]

\[M(\frac{-m_1}{m_1+1}, \frac{-m_2}{m_2+1}, \ldots, \frac{-m_r}{m_r+1} | 2) \]

Lemma

\[M(\frac{-m_1}{m_1+1}, \ldots, \frac{-m_r}{m_r+1} | 2) \text{ are isotopic to pretzel links.} \]
Pretzel knots

Theorem (Lidman-M.)

A pretzel knot admits an L-space surgery if and only if \(K \cong T(2, 2n+1), \ n \geq 0, \) *or* \(K \cong \pm(-2, 3, 2n+1), \ n \geq 0. \)

- Gabai’s classification of fibered pretzel links.
- Determinant-genus inequality
- \(\Delta_K(t) \) obstructions using the Kauffman state sum:

\[
\Delta_K(T) = \sum_{x \in S} (-1)^{M(x)} T^{A(x)}
\]

Figure: Computations use existence of essential Conway spheres.
Essential \(n \)-string tangle decompositions

Definition

\(K \subset S^3 \) has an **essential \(n \)-string tangle decomposition** if \(\exists \) embedded sphere \(Q \) such that \(Q \cap K = \{2n \text{ pts}\} \) and where \(Q - \partial N(K) \) is essential in \(S^3 - N(K) \).

Theorem (Krcatovich)

L-space knots are 1-string prime.

Conjecture (Lidman-M.)

L-space knots are 2-string prime.

Remark: (Wu) \(\Rightarrow \) Amongst arborescent knots, a lens space knot cannot have an essential Conway sphere.
(Hayahsi-Matsuda-Ozawa): If a braided satellite knot has an essential tangle decomposition, then its companion has an essential tangle decomposition, too.

(Hom-Lidman-Vafaee): An L-space knot that is a Berge-Gabai satellite knot must have an L-space knot as its companion.

If there exists a Berge-Gabai L-space knot with an essential tangle decomposition, its companion will also be an L-space knot with an essential tangle decomposition.
What can we say about tunnel number?

- Many L-space knots have tunnel number one.
- Tunnel number one knots are \(n\)-string prime. (Gordon-Reid)
- For all \(N\), there exists an L-space knot with tunnel number \(N\). (Baker-M.)
- There exists a hyperbolic L-space knot with tunnel number two. (Motegi).
Thank you!