Homework 3

due October 24, 2001 in class

- 1. Artin 2.2.16 (pg. 70)
- 2. Artin 2.2.21 (pg. 71)
- 3. Artin 2.3.1 (pg. 71)
- 4. Artin 2.4.10 (pg. 72)
- 5. Artin 2.4.16 (pg. 72)
- 6. Artin 2.4.17 (pg. 72)
- 7. Let $\varphi: G \to G'$ be a group homomorphism. For $H \leq G$ let $\varphi(H) = \{\varphi(a) \mid a \in H\}$ be the image of H under φ , and for $H' \leq G'$ let $\varphi^{-1}(H') = \{a \in G \mid \varphi(a) \in H'\}$ be the inverse image of H'. Show that $\varphi^{-1}(H')$ is a subgroup of G and $\varphi(H)$ is a subgroup of G'.
- 8. Let $m, n \in \mathbb{Z}$ be positive integers. Show that $n\mathbb{Z} \leq m\mathbb{Z}$ if and only if m divides n.
- 9. (a) Show that every subgroup of an abelian group is abelian.
 - (b) Show by example that there exists a non-abelian group G such that every proper subgroup of G is abelian.