Homework 2

due October 16, 2001

- (1) (a) Let σ be the m-cycle $(a_1a_2 \dots a_m)$ in S_n . Show that $|\sigma| = m$
 - (b) Show that the order of an element in S_n is the least common multiple of the lengths of the cycles in its cycle decomposition.
- (2) Let $\phi: G \to H$ be a homomorphism of groups, A a subgroup of G, and B a subgroup of H. Show that
 - (a) $\ker \phi$ and $\phi^{-1}(B) = \{a \in G \mid \phi(a) \in B\}$ are subgroups of G.
 - (b) $\phi(A)$ is a subgroup of H.
- (3) Dummit, Foote I.1.7 Exercise 18 (page 45)
- (4) Dummit, Foote I.1.7 Exercise 19 (page 45)
- (5) Let G and H be groups. Define the direct product of G and H to be the set $G \times H$ with binary operation

$$(a,b)(a',b')=(aa',bb')$$
 where $a,a'\in G$ and $b,b'\in H$.

- (a) Show that $G \times H$ is a group.
- (b) Let $\langle a \rangle$ and $\langle b \rangle$ be finite cyclic groups of orders m and n, respectively, which are relatively prime. Prove that $\langle a \rangle \times \langle b \rangle$ is cyclic.
- (c) What about the converse?
- (6) Dummit, Foote I.2.2 Exercise 10 (page 54)
- (7) Dummit, Foote I.2.3 Exercise 26 (page 62)

Extra problem: Two elements $a, b \in G$ of the group G are called conjugate if there is a $c \in G$ such that $a = cbc^{-1}$.

- (1) Prove that the cycles of maximal length in S_n are conjugate. How many cycles of maximal length are there in S_n ?
- (2) Consider the cycle $\xi = (12 \cdots n) \in S_n$. What is the centralizer of ξ ?
- (3) We showed in class that every permutation $\xi \in S_n$ can be written as

$$\xi = \xi_1 \circ \cdots \circ \xi_r$$

where the ξ_i are cycles and each number $1, 2, \ldots, n$ occurs in precisely one cycle. Let n_i denote the length of cycle ξ_i . We may assume without loss of generality that

$$n_1 + \dots + n_r = n$$

$$n_1 \geq n_2 \geq \cdots \geq n_r$$
.

A tuple (n_1, \ldots, n_r) with these properties is called a partition of n. To each $\xi \in S_n$ we have associated a unique partition of n. Prove the following: Two permutations $\xi_1, \xi_2 \in S_n$ are conjugate if and only if the corresponding partitions of n agree.