Homework 3

due October 23, 2001

1. Prove that $\mathrm{SL}_n(\mathbb{R}) \underline{\triangleleft} \mathrm{GL}_n(\mathbb{R})$. Here $\mathrm{SL}_n(\mathbb{R})$ is the special linear group defined as

$$\mathrm{SL}_n(\mathbb{R}) = \{ A \in \mathrm{GL}_n(\mathbb{R}) \mid \det A = 1 \}.$$

- 2. Find the center of $GL_2(\mathbb{R})$.
- 3. Let G be a group. Show that if G/Z(G) is cyclic then G is abelian.
- 4. Let $H \leq G$ with index [G:H] = n. Show that G has a normal subgroup of index at most n!.

(Hint: Consider the action of G on the left cosets of H).

- 5. Let G be a group, $N \unlhd G$ and let $\bar{G} = G/N$. Prove that $\bar{x}, \bar{y} \in \bar{G}$ commute if and only if $x^{-1}y^{-1}xy \in N$. The element $x^{-1}y^{-1}xy$ is called the commutator of x and y denoted by [x, y].
- 6. Show that all subgroups of index 2 are normal.
- 7. Find all normal subgroups of S_4 .
- 8. Dummit, Foote Section 2.1 Exercise 6 (page 49)
- 9. Dummit, Foote Section 3.1 Exercise 14 (page 87)